Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
33
всего попыток:
46
Пусть f(x) = x2 + ax + bcos(x). Найдите количество целых значений параметров a, при которых уравнения f(x) = 0 и f(f(x)) = 0 имеют совпадающие непустые множества действительных корней.
Задачу решили:
61
всего попыток:
87
Отец с двумя сыновьями отправились навестить бабушку, которая живет в 33 км от города. У отца есть мотороллер, скорость которого 25 км/ч, а с пассажиром — 20 км/ч (двух пассажиров на мотороллере перевозить нельзя). Каждый из братьев идет по дороге со скоростью 5 км/ч. За какое минимальное количество минут все трое доберутся до бабушки?
Задачу решили:
42
всего попыток:
66
Имеется 40 одинаковых газовых баллонов, значения давления газа в которых нам неизвестны и могут бытьра зличны. Разрешается соединятьлю бые баллоны друг с другом в количестве, не превосходящем заданного натурального числа k, а затем разъединять их; при этом давление газа в соединяемых баллонах устанавливается равным среднему арифметическому давлений в них до соединения. При каком наименьшем k существует способ уравнивания давлений во всех 40 баллонах независимо от первоначального распределения давлений в баллонах?
Задачу решили:
44
всего попыток:
56
Путь от платформы A до платформы B электропоезд прошел за X минут (0 < X < 60). Найдите X, если известно, что как в момент отправления от A, так и в момент прибытия в B угол между часовой и минутной стрелками равнялся X градусам.
Задачу решили:
28
всего попыток:
51
На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?
Задачу решили:
39
всего попыток:
56
Найдите все такие пары (x, y) натуральных чисел, что x + y = an, x2 + y2 = am для некоторых натуральных a, n, m. В ответе укажите количество таких пар, в которых оба числа меньше 100.
Задачу решили:
41
всего попыток:
48
Найдите количество пар (a, b) натуральных чисел таких, что при любом натуральном n число an + bn является точной (n+1)-й степенью.
Задачу решили:
36
всего попыток:
53
Известно, что существует число S, такое, что если a+b+c+d=S и 1/a+1/b+1/c+1/d=S (a, b, c, d отличны от нуля и единицы), то 1/(a−1)+1/(b−1)+1/(c−1)+1/(d−1)=S. Найти S2.
Задачу решили:
33
всего попыток:
68
Найти максимальное натуральное число n ≤ 100 для которого найдутся такие положительные рациональные, но не целые числа a и b, что оба числа a + b и an + bn — целые.
Задачу решили:
40
всего попыток:
51
Найти сумму натуральных чисел на которые можно сократить дробь (3m − n)/(5n + 2m), если известно, что она сократима и что числа m и n взаимно просты.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|