img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 29
всего попыток: 64
Задача опубликована: 15.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?

Задачу решили: 43
всего попыток: 111
Задача опубликована: 17.03.17 08:00
Прислал: solomon img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

В выпуклом четырехугольнике ABCD проведены диагонали AC и BD. |AB|=|BD|, угол ABC=136º, угол ADC=150º, угол BAC=30º. Найти значение угла BCD в градусах.

Задачу решили: 58
всего попыток: 96
Задача опубликована: 29.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

В равнобедренном треугольнике ABC угол при вершине CAB расен 20°. Из вершин B и C провели прямые линии так, что угол MBC равен 60°, а угол NCB равен 70°.

Найдите угол MNC в градусах.

Задачу решили: 24
всего попыток: 27
Задача опубликована: 31.03.17 08:00
Прислал: leonid img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На каждой стороне 10-угольника (не обязательно выпуклого) как на диаметре построили окружность. Может ли оказаться, что все эти окружности имеют общую точку, не совпадающую ни с одной вершиной 10-угольника?

Задачу решили: 30
всего попыток: 75
Задача опубликована: 03.04.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

На какое наибольшее количество частей можно шестью прямыми разрезать кольцо, у которого внутренняя часть представляет собой замкнутую выпуклую кривую, способную вписаться в неправильный многоугольник?

Задачу решили: 72
всего попыток: 88
Задача опубликована: 10.04.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

На сторонах треугольника достроены квадраты. Найти площадь шестиугольника с розовыми сторонами.

Задачу решили: 28
всего попыток: 52
Задача опубликована: 14.04.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти максимальное количество областей пересечений 2017 эллипсов.

Задачу решили: 37
всего попыток: 49
Задача опубликована: 22.05.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Треугольник АВС вписан в окружность. Точка М является центром дуги АС по ту сторону окружности, где вершина В. Из точки М провели перпендикуляр МР на сторону АВ. Найти АР, если АВ=24, ВС=6.

Задачу решили: 38
всего попыток: 70
Задача опубликована: 24.05.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

В равностороннем треугольнике АВС чевианы делят противоположные стороны в отношении 3:1(АВ,ВС,СА). Найти площадь образовавшего внутри треугольника, вершинами которого являются точки пересечения чевиан, если площадь треугольника АВС=1.

Задачу решили: 50
всего попыток: 57
Задача опубликована: 21.06.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В треугольнике |BA1|=|A1A2|=|A2C|, |AC1|=|C1B|, |C1Y|=4.

Найти |XY|.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.