img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 104
всего попыток: 198
Задача опубликована: 07.12.10 08:00
Прислала: Marishka24 img
Источник: Putnam Competition
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mnohogrannik

Сколько существует натуральных чисел (включая 1), каждое из которых является делителем по крайней мере одного из чисел 1040 и 2030?

Задачу решили: 49
всего попыток: 85
Задача опубликована: 08.12.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найти минимальное натуральное число n>2010, удовлетворяющее условию: в любом множестве из n целых чисел существует подмножество из 2010 чисел, сумма которых делится на 2010.

Задачу решили: 101
всего попыток: 208
Задача опубликована: 08.12.10 12:00
Прислала: Marishka24 img
Источник: Екатеринбургская олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Сумма квадратов пары целых чисел, каждое из которых лежит в промежутке от 1 до 1000, делится на 121. Сколько существует различных пар с этим свойством? (Пары (x,y) и (y,x) считаются одинаковыми.)

Задачу решили: 77
всего попыток: 112
Задача опубликована: 10.12.10 08:00
Прислала: Marishka24 img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Каспениада (в дальнейшим для краткости именуемая Касей) задумала натуральное число и по секрету сообщила его Аппроксидону (Прокси). Йегиртон (Гиря) тоже задумал натуральное число и тоже по секрету сообщил его Прокси. Прокси вычислил сумму и произведение этих двух чисел, и один из результатов сообщил Касе и Гире. Результат был 2010. Узнав результат, Гиря сказал, что не знает, какое число задумала Кася. Услышав это, Кася сказала, что не знает, какое число задумал Гиря. Какое число задумала Кася?

Задачу решили: 43
всего попыток: 153
Задача опубликована: 10.12.10 12:00
Прислал: COKPAT img
Источник: Международная олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько существует натуральных чисел m от единицы до миллиона включительно, для каждого из которых найдётся натуральное число N, имеющее ровно в m раз меньше различных натуральных делителей, чем его квадрат N2?

Задачу решили: 61
всего попыток: 113
Задача опубликована: 11.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Все целые числа от 1 до 999 выписали в строку (совсем необязательно в порядке возрастания). В каждой пятёрке чисел, написанных подряд, подчеркнули среднее по величине (т.е. третье по возрастанию). Какое наименьшее количество чисел могло быть подчеркнуто?

Задачу решили: 102
всего попыток: 128
Задача опубликована: 13.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Пусть аn=n2+n+1 и bn=an·an+1 (n=1,2,3...). Сколько членов последовательности {bn} НЕ  являются членами последовательности {an}?

Задачу решили: 76
всего попыток: 104
Задача опубликована: 13.12.10 12:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найдите сумму: [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+..., где [x] — наибольшее целое число, не превосходящее x. В ответе введите число цифр в её десятичной записи при n=102010.

Задачу решили: 55
всего попыток: 298
Задача опубликована: 15.12.10 12:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

На подводной лодке служат 25 матросов и капитан. Капитан хочет составить как можно больше нарядов по пять матросов в каждом так, чтобы никакие два наряда не имели более одного общего матроса. Помогите, пожалуйста, капитану и напишите максимальное количество нарядов, которое он сможет составить.

Задачу решили: 40
всего попыток: 194
Задача опубликована: 16.12.10 08:00
Прислала: KATEHbKA img
Источник: Ирландская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Множество X состоит из различных (но не всех) натуральных чисел от 1 до 2010 включительно и не содержит ни одной степени двойки с целым показателем. Кроме того, сумма любых двух чисел из X не равна степени двойки ни с каким целым показателем. Найдите наибольшее количество чисел в X.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.