Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
198
всего попыток:
439
В футбольном турнире каждая команда сыграла с каждой по одному разу. Ровно треть команд хотя бы раз сыграли вничью, а ровно 75% остальных команд не обошлись без поражений. При этом только одна команда не проиграла ни одного матча. Сколько матчей турнира окончились победой одной из команд?
Задачу решили:
255
всего попыток:
569
В романе 50 глав: 25 с нечётным количеством страниц и 25 — с чётным. Первая глава начинается с нечётной страницы, а каждая из остальных — с новой страницы, сразу следующей за предыдущей главой. Какое максимальное число глав может начинаться с чётной страницы?
Задачу решили:
132
всего попыток:
602
Даны 4 точки на плоскости, не лежащие на одной окружности. Каково максимально возможное число окружностей, равноудалённых от всех точек?
Задачу решили:
215
всего попыток:
586
В колонию из 2009 бактерий попадает вирус. Через секунду он уничтожает одну бактерию. Ещё через секунду все бактерии и все вирусы делятся надвое. Далее каждый вирус через секунду после своего рождения уничтожает одну бактерию, а ещё через секунду после этого все бактерии и все вирусы делятся надвое. Через сколько секунд после попадания вируса все бактерии будут уничтожены?
Задачу решили:
220
всего попыток:
486
Какое наибольшее число фотографов могут одновременно сфотографировать друг друга, используя широкоугольные объективы, позволящие делать кадры углового размера 173°? (Фотографы — это различные точки плоскости.)
Задачу решили:
180
всего попыток:
652
В круглый пирог диаметра 35 см запечён металлический рубль диаметра 2 см. На какое минимальное число кусков нужно разрезать пирог, чтобы гарантированно найти монету, если известно, что она расположена в пироге горизонтально? (Разрешается делать только прямолинейные разрезы. Монета считается обнаруженной, если она попадает под нож.)
Задачу решили:
242
всего попыток:
672
Найти остаток от деления на 7 числа
Задачу решили:
149
всего попыток:
242
Найти максимальное значение выражения |...|x1−x2|−x3|−x4|...−x998|−x999|, где x1, x2, x3, x4, ..., x998, x999 — различные натуральные числа от 1 до 999.
Задачу решили:
157
всего попыток:
570
Сколько клеток составляет площадь выпуклого 16-угольника минимального периметра, вершины которого находятся в узлах клетчатой бумаги?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|