img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 469
всего попыток: 684
Задача опубликована: 29.05.09 11:30
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Aspid_Vlas

Окружим Землю вдоль экватора ремнём так, чтобы он плотно прилегал к поверхности по всей длине. Землю будем считать идеальным шаром с радиусом 6 400 000 метров. Увеличим длину ремня на 1 метр и приподнимем его над экватором так, чтобы расстояние от ремня до линии экватора было одинаковым по всей длине. Чему будет равно это расстояние? В ответе укажите ближайшее целое число сантиметров. 

Задачу решили: 134
всего попыток: 351
Задача опубликована: 15.06.09 17:25
Прислал: demiurgos img
Источник: А.К.Толпыго "Тысяча задач"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Бильярд имеет форму прямоугольного треугольника, один из углов которого равен 30°. Из этого угла в середину противоположной стороны выпущен шар, который при ударах о стенки бильярда отскакивает от них по закону: угол падения равен углу отражения.

Сколько раз шар ударится о стенки прежде, чем попадёт в лузу, находящуюся в вершине угла 60°? 

Задачу решили: 89
всего попыток: 339
Задача опубликована: 17.06.09 14:58
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

Перед двумя игроками 4 кучки из спичек: в первой — 11, во второй — 29, в третьей — 37 и в четвёртой — 41 спичка. Каждый игрок своим ходом берёт любое (ненулевое) число спичек из любой кучки по своему выбору — можно взять хоть всю кучку, но брать спички из разных кучек нельзя. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек и из какой кучки должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе введите произведение количества взятых спичек и номера кучки.

Задачу решили: 351
всего попыток: 404
Задача опубликована: 21.06.09 00:27
Прислал: demiurgos img
Источник: ЕГЭ
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: iVantus

Сколько квадратных сантиметров составляет площадь равнобедренной трапеции, если длина её средней линии равна 21 см, а диагонали — 29 см?

Задачу решили: 198
всего попыток: 755
Задача опубликована: 28.06.09 21:06
Прислал: Rep img
Источник: Международная математическая олимпиада школьн...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Какое максимальное количество шаров диаметра 1 можно уложить в коробку размерами 10х10х1?

Задачу решили: 161
всего попыток: 335
Задача опубликована: 30.06.09 18:59
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

Есть 10 упаковок по 100 одинаковых монет в каждой. Есть несколько упаковок с фальшивыми монетами, вес каждой из которых на 0,1 грамма меньше, чем настоящей. Имеются весы, измеряющие вес с точностью до 0,1 грамма. За какое минимальное число взвешиваний можно выявить все упаковки с фальшивыми монетами? (Веса настоящих монеты известны. В каждой упаковке либо все монеты фальшивые, либо все настоящие. Упаковки можно вскрывать.)

Задачу решили: 198
всего попыток: 269
Задача опубликована: 03.07.09 22:37
Прислал: Rep img
Источник: Ростовская областная математическая олимпиада...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Стороны треугольника — последовательные целые числа. Найдите эти стороны, если известно, что одна из его биссектрис перпендикулярна одной из его медиан. В ответе укажите сумму сторон треугольника.

Задачу решили: 272
всего попыток: 297
Задача опубликована: 10.07.09 19:58
Прислал: Rep img
Источник: И.Ф.Шарыгин "Геометрия, задачник9-11"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

В равнобедренной трапеции средняя линия равна 10, а диагонали взаимно перпендикулярны. Найти площадь трапеции.

Задачу решили: 129
всего попыток: 277
Задача опубликована: 16.07.09 00:35
Прислал: twister img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Трёх одинаковых роботов расположили в вершинах правильного треугольника со стороной 21 сантиметр. Скорость каждого робота 2 сантиметра в секунду. Роботов настроили так, чтобы после включения каждый гнался за следующим по часовой стрелке (в любой момент вектор скорости направлен на цель). Сколько сантиметров преодолеет каждый из роботов после их одновременного включения и до того, как они все поймают друг друга?

Задачу решили: 133
всего попыток: 154
Задача опубликована: 19.07.09 20:50
Прислал: Rep img
Источник: "Квант"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Найдите площадь треугольника по радиусам его трёх вневписанных окружностей: ra=4, rb=6, rс=12 (ra — это радиус окружности, которая касается стороны a и продолжений сторон b и c).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.