img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 46
всего попыток: 115
Задача опубликована: 10.02.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Дана окружность, радиус которой равен 36, и центр которой - точка O, и две точки на этой окружности: A и B. 

Дана точка P. Длины отрезков:

|PO| = 54

|PA| = 25

|PB| = 29

Прямая PA пересекает окружность в ещё одной точке A’. Прямая PB пересекает окружность в ещё одной точке B’.

Обозначим: C – точка пересечения прямых AB и A’B’, D – точка пересечения прямых AB’ и A’B, M – точка пересечения прямых CD и PO.

Чему равна длина отрезка OM?

+ 11
+ЗАДАЧА 700. Делимость (Р. Женодаров)
  
Задачу решили: 92
всего попыток: 103
Задача опубликована: 21.02.12 07:59
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: NNN

Найти сумму всех натуральных чисел, имеющих ровно 6 делителей, сумма которых равна 3500.

Задачу решили: 137
всего попыток: 147
Задача опубликована: 17.02.12 08:00
Прислал: Yhlas img
Источник: Зарубежные математические олимпиады
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Решите систему уравнений:
x+xy+y=2+3√2,
x2+y2=6.
Чему равно (xy)2?

+ 7
  
Задачу решили: 67
всего попыток: 123
Задача опубликована: 20.02.12 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Volga (Xxx Xxx)

По кругу лежат 100 белых камней. Дано целое число k в пределах от 1 до 50. За ход разрешается выбрать любые k подряд идущих камней, первый и последний из которых белые, и покрасить первый и последний камни в черный цвет. При каком максимальном k можно за несколько таких ходов покрасить все 100 камней в черный цвет?

Задачу решили: 61
всего попыток: 162
Задача опубликована: 22.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точка М - середина стороны BC треугольника ABC. Известно, что\angle MAC = 15^\circ. Найдите максимальное значение \angle ABC. Ответ дайте в градусах.

Задачу решили: 65
всего попыток: 121
Задача опубликована: 27.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть n > 2 целое число. Найдите наибольшее K и наименьшее G, при которых для любых положительных чисел a1, a2, ..., an справедливо следующее неравенство:

K <
\frac{a_1}{a_1 + a_2} + 
\frac{a_2}{a_2 + a_3} + \cdots
\frac{a_n}{a_n + a_1} <
G

Чему равно K+G для n = 100.

 

Задачу решили: 45
всего попыток: 111
Задача опубликована: 29.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Множество Q(n) состоит из слов длины 2n, в записи которых ровно n букв A и n букв B, обладающих следующим свойством: для каждого k ≤ 2n среди первых k букв количество букв B не меньше, чем букв A. Найдите мощность Q(8).

Задачу решили: 89
всего попыток: 185
Задача опубликована: 01.03.12 08:00
Прислал: levvol img
Источник: По мотивам задачи И.Ньютона
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

У фермера в хозяйстве овцы и коровы, фермер арендует пастбище у своего соседа.  Сосед сообщает ему, что из предыдущего опыта известно,  что 140 овец за 12 дней съедают всю растительность на пастбище, 60 овец за 60 дней съедят всю растительность на этом же пастбище (трава растет). 30 коров  поедят всю растительность за 20 дней. Фермер решает выпустить всех своих 12 коров на пастбище совместно с овцами на 30 дней аренды. Сколько овец он может выпустить на арендуемое пастбище? 

Задачу решили: 66
всего попыток: 172
Задача опубликована: 07.03.12 08:00
Прислал: katalama img
Источник: Британская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Дана последовательность натуральных чисел u0, u1,u2,... такая, что u0=1, un-1*un+1=kun, для любого n≥1. Найти сумму всех возможных значений параметра k, если известно, что u2012=2012.

Задачу решили: 94
всего попыток: 109
Задача опубликована: 09.03.12 08:00
Прислал: Yhlas img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

f(x)=4x/(4x+2)

S=f(0)+f(1/n)+f(2/n)+…+f((n-1)/n)+f(1)=? (n-нечетное)

Чему равно S при n=2011?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.