![]()
Лента событий:
Mika решил задачу "Раскрашенные точки на квадратной сетке" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
17
всего попыток:
21
В правильном треугольнике АВС проведены чевианы AD и ВЕ так, что |BD|:|DC|=2:1, |СЕ|:|ЕА|=2:1. Найти отношение длины отрезка СО к стороне треугольника(О-точка пересечения чевиан). В ответе указать квадрат этого значения. ![]()
Задачу решили:
13
всего попыток:
16
В прямоугольнике ABCD (AB > AD) на сторонах BC и CD выбраны соответственно точки K и M так, что треугольник AKM – правильный. Площади треугольников ABK и DAM равны соответственно 1 + √6 - √3 и 1 + √3. Найти величину угла DAM в градусах. ![]()
Задачу решили:
19
всего попыток:
21
В прямоугольном треугольнике АВС (угол С-прямой) проведены медиана AD и биссектриса ВЕ. Четырехугольник ABDE является вписанным в окружность. Найти отношение длин ВС/АВ. ![]()
Задачу решили:
15
всего попыток:
20
Окружность проходит через вершины B и C параллелограмма ABCD и касается его высоты AH, проведенной к стороне CD, в точке K. KF – это перпендикуляр, проведенный из точки K к прямой BC. Длины отрезков CH, HD и KF – последовательные натуральные числа, расположенные в возрастающем порядке. Найдите длину стороны АВ параллелограмма ABCD. ![]()
Задачу решили:
12
всего попыток:
20
В правильном пятиугольнике отмечены середины сторон и проведены десять отрезков так, как на рисунке. Найти отношение площадей внутреннего десятиугольника и исходного пятиугольника. В ответе укажите десятичную дробь с точностью до тысячных долей, в качестве десятичного разделителя используйте запятую. ![]()
Задачу решили:
13
всего попыток:
20
Правильный 2025-угольник разбит непересекающимися диагоналями на треугольники. Найти отношение количества остроугольных треугольников к количеству тупоугольных треугольников.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|