Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
32
всего попыток:
71
Дана белая клетчатая доска 10?10. Игрок хочет провести в каждой клетке диагональ и закрасить один из получающихся треугольников в черный цвет так, чтобы к любой границе двух клеток примыкали два одноцветных треугольника. Сколькими различным способами игрок может это сделать?
Задачу решили:
30
всего попыток:
380
Известно, что радиус вписанной в треугольнике окружности равен 6, а радиус описанной около него окружности равен 65/3.
Задачу решили:
35
всего попыток:
200
В некоторых геометрических построениях с помощью циркуля и линейки можно обойтись одним циркулем или одной линейкой. Рассмотрим множество всех таких натуральных чисел n>1, которые удовлетворяют следующему условию: с помощью одной линейки можно разделить сторону заданного (уже нарисованного) прямоугольника на n равных частей. Какие натуральные числа 1<n<22 принадлежат этому множеству? Укажите в ответе их сумму.
Задачу решили:
89
всего попыток:
100
Для натурального n>3 будем обозначать через n? ( n-вопросиал) произведение всех простых чисел, меньших n. Найдите сумму решений уравнения n?=2n+16.
Задачу решили:
74
всего попыток:
113
В натуральном числе A переставили цифры и получили число B. Известно, что A - B состоит из единиц. Найдите наименьшее возможное количество единиц в разности.
Задачу решили:
66
всего попыток:
141
В выпуклом четырёхугольнике ABCD углы ABC, BCD, DBC и ACD равны 990, 360, 810 и 90 соответственно. Найдите величину угла DAC в градусах.
Задачу решили:
71
всего попыток:
108
Петя задумал натуральное число и для каждой пары его цифр выписал на доске их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?
Задачу решили:
77
всего попыток:
149
Найти минимальное значение квадрата выражения: x/y+z/t, если 1≤x≤y≤z≤t≤2013.
Задачу решили:
71
всего попыток:
114
Несколько (больше одного) человек, каждый из которых вначале имеет 300 долларов, играют в казино. Один раунд игры заключается в следующем. Все игроки отдают по 10 долларов крупье, затем один из них по жребию объявляется проигравшим. Он раздаёт все свои деньги поровну всем остальным и выходит из игры. В итоге оказалось, что у последнего оставшегося игрока капитал вновь составляет 300 долларов. Сколько человек пришло в казино?
Задачу решили:
105
всего попыток:
117
Известно, что число ababab делится на 217. Найдите сумму возможных значений ab. (Здесь a, b - десятичные цифры, ababab и ab - числа, составленные из этих цифр.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|