img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 50
всего попыток: 85
Задача опубликована: 22.01.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Среди 10-элементных подмножеств множества A ={1, 2, ..., 30} найдите количество тех, в которых разность любых двух элементов не меньше 3.

Задачу решили: 33
всего попыток: 75
Задача опубликована: 24.01.14 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

У менеджера  10 поручений. Выполнять их надо по одному в день, но в определенном порядке. Поручения занумерованы числами от 1 до 10. На поручения с 1 по 5 наложены ограничения. В первый и шестой день нельзя выполнять первое поручение, во второй  и  седьмой день нельзя выполнять второе поручение и т. д.  в пятый и десятый день нельзя выполнять пятое поручение. 5 поручений с 6 -го по 10 можно выполнять в любой из десяти дней. Hайти количество способов  выполнить  поручения.  

Задачу решили: 64
всего попыток: 83
Задача опубликована: 31.01.14 08:00
Прислал: pvpsaba img
Источник: Грузинская национальная математическая олимпи...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найти сумму всех натуральных п таких, что справедливо следующее равенство:
e85a4ef4e7f963ecac9aaae9ec94b0d332a452a2.png .

Задачу решили: 62
всего попыток: 108
Задача опубликована: 07.02.14 08:00
Прислал: Dremov_Victor img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Для действительных чисел x, y выполнено условие

|x + y + 1| + |x + 1| + |y + 3| = 3.

Обозначим за M наибольшее, а за m наименьшее значение, которое может принимать выражение x2 + y2.

Найдите M + 2m.

Задачу решили: 11
всего попыток: 426
Задача опубликована: 10.02.14 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Сколько существует различных вписанных четырёхугольников ABCD, для которых AB=DA+BC=1, а величины углов DAB и ABC в градусах целочисленные?

Задачу решили: 68
всего попыток: 115
Задача опубликована: 12.02.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: PgpGerm (Георгий Иванов)

Обозначим a(n) сумму цифр натурального числа n. Найдите количество трехзначных чисел n, удовлетворяющих условию a(n) = a(2n) и все цифры которых нечетны.

Задачу решили: 55
всего попыток: 65
Задача опубликована: 14.02.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: snape

Любое простое число вида p=4k+1 можно единственным способом представить в виде:

p = a² + b²,

где a<b - целые положительные числа. Например:

165100009 = 5520² + 11603².

Квадраты таких простых чисел также можно представить единственным способом в виде:

p² = x² + y²,

где x<y - целые положительные числа.

Найдите два целых положительных числа x<y, для которых выполняется:

165100009² = x² + y².

В качестве ответа введите оба числа подряд без пробелов: x (меньший), и сразу за ним y (больший).

Задачу решили: 38
всего попыток: 58
Задача опубликована: 17.02.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В очереди стояло 20 человек. Касса сломалась, и все перешли в соседнюю только что открывшуюся кассу. Сколькими способами они могут выстроиться в новую очередь так, чтобы человек, стоявший на месте с номером k изменил свой номер в очереди не более чем на k?

Задачу решили: 54
всего попыток: 74
Задача опубликована: 19.02.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно, что действительные числа a и b удовлетворяют уравнению
a2 + 200ab + 10000 = 0.
Найдите наибольшее значение (a + 100) / (b + 1).

Задачу решили: 27
всего попыток: 139
Задача опубликована: 21.02.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Рассмотрим простое число p и трёхчлен:

2x² + 11x + 1.

Обозначим:

f(p) - количество целых неотрицательных x, не превосходящих p, при которых трёхчлен делится на p.

g(p) - сумма всех этих x для данного p.

Найдите сумму g(p) по всем таким p, для которых f(p)=1.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.