Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
42
всего попыток:
152
Найдите все треугольники, длины сторон которых целые числа и площади и периметры у каждого равны между собой (как числа). У каждого такого треугольника выберите самую длинную сторону и сложите все эти длины. Какое число у вас получилось?
Задачу решили:
79
всего попыток:
82
Дорога из пункта А в пункт В местами ровная, а местами - под гору или в гору. Скорость движения пешехода в гору 4 км/час, по ровному месту – 5 км/час, под гору – 6 км/час. Расстояние между А и В по дороге 9 км, пешеход прошел туда и обратно за 3 часа 41 минуту. Какая часть дороги (км) идет по ровным местам?
Задачу решили:
38
всего попыток:
117
У бедного мальчика Саши всего 300 монет, и к тому же ровно одна из них фальшивая (легче настоящей). У жадного мальчика Кости есть весы, но за каждое взвешивание он берет с Саши плату: два рубля, если перевесила левая чашка, и один рубль при любом другом исходе. Какую наименьшую сумму должен приготовить Саша, чтобы заведомо определить фальшивую монету с помощью Костиных весов?
Задачу решили:
40
всего попыток:
49
Последовательности {an} и {bn} задаются следующим образом. Выбираются два произвольных числа а0 > 0 и b0 < 0. Числа an+1 и Ьn+1 принимаются равными, соответственно, положительному и отрицательному корням уравнения х2 + аnх + Ьn=0. Найдите модуль произведения пределов обеих последовательностей.
Задачу решили:
18
всего попыток:
122
Найти количество пар взаимно-простостых целых чисел (m, n), таких что 0 < m < n < 10100, и m | (n2-11) и n | (m2-11).
Задачу решили:
54
всего попыток:
105
Известно, что для многочлена 5-й степени p(x): Чему равно p(7)?
Задачу решили:
17
всего попыток:
444
Найти наибольшее целое число N для которого существует N троек неотрицательных целых чисел (ai, bi, ci) (i=1...N) таких, что: для всех 1 ≤ i≠j ≤ N, ai≠aj, bi≠bj, ci≠cj; для всех 1 ≤ i ≤ N, ai+bi+ci=2014.
Задачу решили:
46
всего попыток:
84
Известно, что a15+a25 +...an5= 2004, ai - целые числа. Найдите минимальное положительное значение a1+a2 +...an?
Задачу решили:
45
всего попыток:
94
В прямоугольном треугольники периметр (P) и площадь (S) - целые числа и (P+4)=(S-1)(P-4). Найдите сумму всех возможных переиметров таких треугольников?
Задачу решили:
38
всего попыток:
115
Действительное число x удовлетворяет условию: 1/[x]=1/[2x]+1/[3x]+1/[5x], где [x] - целая часть от x. Пусть m - наибольшее положительное, а M - наименьшее положительное значения такие, что m≤x≤M, и M+m представляется в виде нескоратимой дроби p/q. Чему равно p+q?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|