Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
62
всего попыток:
77
Натуральное число 55n3 имеет 55 делителей, включая 1 и само число. Сколько делителей имеет натуральное число вида 7n7?
Задачу решили:
50
всего попыток:
73
Последовательность чисел ai такая, что: Найдите n такое, что an - максимальное 4-значное число этой последовательности.
Задачу решили:
25
всего попыток:
135
Найти наименьшее число n такое, что (1-1/a1)(1-1/a2)...(1-1/an)=51/2010, где все ai - различные натуральные числа.
Задачу решили:
66
всего попыток:
97
Найти наименьшее натуральное число N такое, что N! кратно 102015.
Задачу решили:
65
всего попыток:
94
Найти две последние цифры значения выражения 21-22+23-24+25-26+...+22013.
Задачу решили:
47
всего попыток:
71
Найти минимальное n такое, что количество нулей в конце числа (n+20)!×(n+15)! делится на 2015.
Задачу решили:
60
всего попыток:
122
Найти максимальное натуральное число n такое, что n7+1 делится на n+7.
Задачу решили:
44
всего попыток:
72
Строго монотонная положительная функция f(x): N→N (N - множество натуральных чисел), при этом f(f(x))=3x. Найдите f(2015)+f(2014)+f(2013)-3f(2012).
Задачу решили:
60
всего попыток:
78
Пусть a1=1, a2=2, a3=3 и an+3=(an+2+an+1+an)/3 для n>0. Найти предел последовательности.
Задачу решили:
62
всего попыток:
81
Многочлен от одной переменной p(x) с целыми положительными коэффициентами такой, что p(1)=12, а p(12)=2080. Найти p(10).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|