img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 2
+ЗАДАЧА 1438. Цепочка (А. Шаповалов)
  
Задачу решили: 34
всего попыток: 72
Задача опубликована: 04.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg

Ювелир сделал незамкнутую цепочку из 120 пронумерованных звеньев. Капризная заказчица потребовала изменить порядок звеньев в цепочке. Из вредности она заказала такую незамкнутую цепочку, чтобы ювелиру пришлось раскрыть как можно больше звеньев. Сколько звеньев придется раскрыть?

Задачу решили: 23
всего попыток: 117
Задача опубликована: 09.11.16 08:00
Прислал: TALMON img
Источник: По мотивам задачи "Представляем число"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите наименьшее натуральное число, представимое в виде суммы 10-и различных натуральных слагаемых с одинаковой суммой цифр и в виде суммы 11-и различных натуральных слагаемых с одинаковой суммой цифр.

Задачу решили: 46
всего попыток: 71
Задача опубликована: 18.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: twister

Найдите колчество пар целых чисел (x, y) таких, что (x2-y2)2=1+16y.

Задачу решили: 41
всего попыток: 46
Задача опубликована: 21.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

На параболе y = x2+px+q лучи y=x и y=2x при x≥0 высекают две дуги. Эти дуги спроектированы на ось 0x. Найдите разницу длин проекций правой и левой дуг.

Задачу решили: 32
всего попыток: 33
Задача опубликована: 23.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg

В каждую клетку квадратной таблицы размера (22016−1)×(22016−1) ставится одно из чисел +1 или −1. Расстановку чисел назовем удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.

+ 1
  
Задачу решили: 35
всего попыток: 37
Задача опубликована: 28.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти сумму цифр натурального числа 3N, если известно, что сумма цифр в десятичной записи N равна 100, а сумма цифр числа 44n равна 800.

Задачу решили: 34
всего попыток: 37
Задача опубликована: 30.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Для конечного множества чисел известно, что среди любых трех чисел имеются два, сумма которых принадлежит этому множеству. Найти наибольшее число элементов в множестве.

+ 1
+ЗАДАЧА 1450. Функция (Н. Агаханов, О. Подлипский)
  
Задачу решили: 45
всего попыток: 47
Задача опубликована: 02.12.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: fortpost

Для функции f: R → R для всех x, y, z ∈ R верно f(x+y)+f(y+z)+f(z+x) ≥ 3f(x+2y+3z). f(0)=1. Найти f(1).

Задачу решили: 29
всего попыток: 59
Задача опубликована: 05.12.16 21:23
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найдите сумму произведений пар действительных чисел b и c таких, что каждое уравнение  x3+bx2+cx+10=0 и y3+(c+b2)y2-(c+b)y+(b3-c)=0  имеет по три различных целых корня

Задачу решили: 30
всего попыток: 61
Задача опубликована: 16.12.16 08:00
Прислал: TALMON img
Источник: По мотивам задачи "Пары чисел и кубические ур...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество пар действительных чисел b и c таких, что оба уравнения x3+bx2+cx+10=0 и y3+(b+21)y2+(14b+c+147)y+(49b+7c+353)=0 имеют по три различных целых корня.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.