img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: makar243 добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 129
всего попыток: 175
Задача опубликована: 21.12.10 08:00
Прислал: Busy_Beaver img
Источник: Мексиканская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите остаток от деления числа 11+1111+111111+...+11111111111111111111 на 100. (В последнем числе 10 единиц в основании степени и 10 — в показателе.)

Задачу решили: 98
всего попыток: 212
Задача опубликована: 24.12.10 12:00
Прислала: KATEHbKA img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Найдите наибольшее n, для которого число 3·33·333·...·33...3 (в десятичной записи последнего множителя ровно 2010 троек) делится на 3n.

Задачу решили: 102
всего попыток: 288
Задача опубликована: 27.12.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Сколько существует натуральных чисел, делящихся нацело на 210 и имеющих ровно 210 различных натуральных делителей?

Задачу решили: 76
всего попыток: 102
Задача опубликована: 30.12.10 16:19
Прислал: COKPAT img
Источник: Журнал"Квант"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: scythian (Роман Семёнов)

С каждым из чисел от 000 000 до 999 999 поступим следующим образом: умножим первую цифру на 1, вторую на 2 и так далее, последнюю — на 6. Сумму полученных шести чисел назовём характеристикой исходного числа. Характеристики скольких чисел делятся на 7?

Задачу решили: 105
всего попыток: 187
Задача опубликована: 30.12.10 16:19
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kryusvy (Святослав Крюков)

Если от натурального числа отнять квадрат суммы его цифр, какое наименьшее число может получиться?

Задачу решили: 46
всего попыток: 155
Задача опубликована: 03.01.11 08:00
Прислал: demiurgos img
Источник: по мотивам Всероссийской олимпиады
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Дано: N=a1+a2+...+a2010=b1+b2+...+b2011, все числа a1, a2, ..., a2010 — натуральные и имеют одну и ту же сумму цифр A, все числа b1, b2, ..., b2011 — натуральные и имеют одну и ту же сумму цифр B. Найдите наименьшее значение N.

Задачу решили: 87
всего попыток: 127
Задача опубликована: 04.01.11 08:00
Прислала: Marishka24 img
Источник: Австрийская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

В последовательности {a0, a1, a2,...} a3=91 и при n≥0 an+1=10an+(–1)n. Сколько элементов этой последовательности являются квадратами целых чисел?

Задачу решили: 64
всего попыток: 178
Задача опубликована: 08.01.11 10:00
Прислал: COKPAT img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Сколько различных чисел встречается среди чисел [12/n], [22/n], [32/n], ..., [(n−1)2/n], [n2/n] (где [x] — целая часть числа x)? В ответе укажите последнюю цифру при n=20112011.

Задачу решили: 109
всего попыток: 131
Задача опубликована: 21.01.11 08:00
Прислала: Marishka24 img
Источник: "Квант"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

В какое наибольшее число раз сумма цифр натурального числа n может превышать сумму цифр числа 8n

Задачу решили: 20
всего попыток: 132
Задача опубликована: 24.01.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Точка A лежит вне прямой a, на которой отмечены 2011 различных точек. Известно, что расстояние от точки A до прямой a, а также между любыми двумя из всех упомянутых 2012 точек является целым числом. Найдите наименьшее возможное расстояние между прямой a и точкой A.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.