Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
31
Для некоторых натуральных n>0 степени 4n и 5n начинаются с одинаковой цифры. Найдите сумму таких различных первых цифр.
Задачу решили:
21
всего попыток:
54
В выпуклом четырехугольнике ABCD стороны BC, AD, CD касаются некоторой окружности, центр которой находится в середине АВ. Найти различные целочисленные значения АВ, BC, AD такие, что их сумма наименьшая. В ответе указать эту сумму.
Задачу решили:
23
всего попыток:
36
Найти наименьшее целое число X, для которого при некоторых различных положительных целых числах m и n 4 квадратных корня из (X-m), (X-n), (X+m) и (X+n) являются целыми числами.
Задачу решили:
27
всего попыток:
33
Около правильного семиугольника описана окружность с единичным радиусом. Найти сумму квадратов расстояний от вершин до прямой, проходящей через центр окружности.
Задачу решили:
22
всего попыток:
26
Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке. Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем ветвь параболы y=√x и рассмотрим на ней точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (4; 2) — число 51. Пусть an — число, соответствующее точке (n2;n) параболы; тогда a0=1, a1=9, a2=51, a3=295, ... Найдите 23-й член последовательности (an).
Задачу решили:
19
всего попыток:
23
В координатной плоскости Oxy задана парабола y=x2, на которой отмечены все ее точки с целыми координатами. Проведены всевозможные хорды параболы, с концами в отмеченных точках. Расположим хорды в порядке возрастания их длины, без повторений, и рассмотрим последовательность квадратов длин этих хорд. Начало последовательности выглядит так: 2, 4, 10, 16, 18, 20, 26, …. На рисунке изображена хорда AB, которой соответствует а12 = 42+82 = 80. Найдите 64-ый член последовательности.
Задачу решили:
24
всего попыток:
32
Около треугольника АВС со сторонами АВ=85, ВС=102, СА=119 описана окружность. В точках А и В проведены касательные, которые пересекаются в точке D. Отрезок CD пересекает сторону АВ в точке Е и делит её на отрезки АЕ и ЕВ. Найти их длины и в ответе указать модуль разности.
Задачу решили:
20
всего попыток:
56
На плоскости отмечены N точек. Любые три из них образуют треугольник, величины углов которого в градусах выражаются натуральными числами. При каком наибольшем N это возможно?
Задачу решили:
22
всего попыток:
25
Через концы меньшего основания трапеции проведены две параллельные прямые,пересекающие большее основание. Диагонали трапеции и эти прямые разделили трапецию на семь треугольников и пятиугольник. Площади двух треугольников,прилежащих к боковым сторонам равны 60 и 87, площадь треугольника, прилежащего к меньшему основанию равна 105. Найти отношение площади этого треугольника к площади пятиугольника.
Задачу решили:
24
всего попыток:
30
Найдите количество хорд с концами в целочисленных точках параболы y = x2 при |x| <= 9*12 (=108)? В ответе укажите это количество хорд, делённое на 12. P.S. С Днем Рождения, Николай Иванович!
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|