Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
369
всего попыток:
3937
Каково максимально возможное количество сфер, каждая из которых касается всех четырёх плоскостей, являющихся продолжениями граней некоторого тетраэдра? (Тетраэдр — это треугольная пирамида.)
Задачу решили:
188
всего попыток:
2145
В пространстве даны четыре точки, не лежащие в одной плоскости. Сколько существует различных параллелепипедов, для каждого из которых все данные точки являются вершинами? (Различные — как множества; например, равные параллелепипеды, но сдвинутые друг относительно друга, тоже считаются различными.)
Задачу решили:
293
всего попыток:
668
Какая цифра стоит на 100-м месте после запятой в десятичной записи числа (44+√2009)2009?
Задачу решили:
116
всего попыток:
395
На окружности отмечена точка, из которой по часовой стрелке циркулем делается засечка. Из полученной точки в том же направлении тем же радиусом делается вторая засечка, и так повторяется 2009 раз. После этого окружность разрезается во всех 2009 засечках, и получается 2009 дуг. Какое максимально возможное число дуг различной длины может при этом получиться?
Задачу решили:
194
всего попыток:
660
Наибольший общий делитель (НОД) натуральных чисел m и n равен 1. Каково максимально возможное значение НОД чисел m+100n и n+100m?
Задачу решили:
115
всего попыток:
372
Какова наибольшая возможная площадь ортогональной проекции на горизонтальную плоскость прямоугольного параллелепипеда со сторонами 10, 20 и 30 см? (Ответ дайте в квадратных сантиметрах.)
Задачу решили:
171
всего попыток:
572
На сколько процентов максимально возможная площадь круга, лежащего внутри куба, больше площади круга, вписанного в его грань?
Задачу решили:
140
всего попыток:
412
Сколько градусов составляет наименьший угловой размер большой диагонали куба, если смотреть с его поверхности (исключая, разумеется, концы самой диагонали)?
Задачу решили:
123
всего попыток:
463
Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)
Задачу решили:
226
всего попыток:
551
Каждое из 2009 чисел равно 1, 0 или -1. Какое наименьшее значение может принимать сумма произведений всех пар, составленных из этих чисел?
(Предлагалась на "Первом математическом")
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|