Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
18
У Васи есть три предмета: 1. Монета 2. Игральная кость на каждой стороне которой написаны различные гласные буквы английского алфавита: 'AEIOUY' 3. Икосаэдр, на каждой грани которого написаны различные согласные буквы английского алфавита: 'BCDFGHJKLMNPQRSTVWXZ' Вася кидает монету и: - если выпадает орел, то он бросает игральную кость и выписывает выпавшую букву на доску; - если выпадает решка, то он бросает икосаэдр и выписывает выпавшую букву на доску. Так он продолжает делать, пока полученная последовательность букв не будет заканчиваться словом 'ABBA'. Сколько раз (в среднем) Василию придется бросить монетку?
Задачу решили:
9
всего попыток:
23
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?
Задачу решили:
10
всего попыток:
12
В большом мешке находятся 600 пронумерованных от 0 до 599 бочонков лото. На билете лото напечатаны пять разных полей с числами. На первом поле - числа от 0 до 59, на втором - от 60 до 149, на третьем - от 150 до 269, на четвёртом - от 270 до 419 и на пятом - от 420 до 599. В процессе игры из мешка, случайным образом, вынимают бочонки. Число, которое обозначено на вынутом бочонке вычеркивается в билете лото, а бочонок возвращается в мешок. Билет лото считается выигрышным, и игра заканчивается, как только в каждом из пяти полей билета оказалось, по меньшей мере, вычеркнуто одно число. Сколько раз в среднем надо вынуть бочонок из мешка, чтобы билет лото стал выигрышным?
Задачу решили:
11
всего попыток:
18
В мешке есть шары 3 различных цветов. Поочередно берут один шар, смотрят на его цвет и кладут обратно в мешок. Оказалось, для того чтобы вынуть хотя-бы раз шар каждого цвета, требуется в среднем 937/105 попыток. Какое минимальное количество шаров может быть в мешке?
Задачу решили:
12
всего попыток:
13
Найти пифагоров треугольник с наименьшим периметром, в который можно вписать две одинаковые окружности с радиусами больше 10, при этом одна окружность касается гипотенузы, катета и чевианы из прямого угла, а другая - гипотенузы, второго катета и той же чевианы. В ответе укажите периметр найденного треугольника.
Задачу решили:
21
всего попыток:
22
Пусть p и q – длины отрезков одной из биссектрис треугольника, получаемые разбиением её точкой пересечения биссектрис (отрезок p примыкает к вершине). Даны соответствующие отношения p:q для трёх биссектрис этого треугольника: 5:4; 7:2 и 2:1. Найдите периметр этого треугольника, если длина одной из его сторон равна 411 и искомый периметр – целое число.
Задачу решили:
19
всего попыток:
72
Дедушке прописали принимать по полтаблетки каждый день в течение 60 дней. В пузырьке было 30 целых таблеток. В первый день он вытряхнул из пузырька таблетку и разломал ее пополам, одну половинку принял, а вторую положил обратно в пузырёк. Каждый следующий день он случайным образом вытряхивал из пузырька таблетки - если это оказывалась целая таблетка, то он ее разламывал и принимал половинку, а вторую клал в пузырёк, если выпадала половинка, то он принимал её. На какой день с вероятностью не менее 1/2 выпадет половинка таблетки?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|