Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
21
всего попыток:
49
При последовательном подбрасывании монеты, после каждого броска сравнивают количество ранее выпавших орлов и решек и подсчитывают сколько раз эти количества совпадали. Например, если монета выпадала так: ОРОРРРР (О - орел, Р - решка), то количество таких совпадений равно 2, а если РРРРОРОР, то количество совпадений равно 0. Пусть n - это количество бросков монеты, а F(n) это среднее количество совпадений (или математическое ожидание количества совпадений). Тогда: F(1) = 0/2 = 0, Найдите минимальное n при котором F(n) будет больше или равно 3
Задачу решили:
10
всего попыток:
30
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы мы увидели все эти 4 символа (в любой последовательности)?
Задачу решили:
10
всего попыток:
18
У Васи есть три предмета: 1. Монета 2. Игральная кость на каждой стороне которой написаны различные гласные буквы английского алфавита: 'AEIOUY' 3. Икосаэдр, на каждой грани которого написаны различные согласные буквы английского алфавита: 'BCDFGHJKLMNPQRSTVWXZ' Вася кидает монету и: - если выпадает орел, то он бросает игральную кость и выписывает выпавшую букву на доску; - если выпадает решка, то он бросает икосаэдр и выписывает выпавшую букву на доску. Так он продолжает делать, пока полученная последовательность букв не будет заканчиваться словом 'ABBA'. Сколько раз (в среднем) Василию придется бросить монетку?
Задачу решили:
23
всего попыток:
25
В правильной шестиугольной призме все ребра равны. Найдите угол между прямыми A1B и B1E в градусах.
Задачу решили:
9
всего попыток:
23
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?
Задачу решили:
10
всего попыток:
12
В большом мешке находятся 600 пронумерованных от 0 до 599 бочонков лото. На билете лото напечатаны пять разных полей с числами. На первом поле - числа от 0 до 59, на втором - от 60 до 149, на третьем - от 150 до 269, на четвёртом - от 270 до 419 и на пятом - от 420 до 599. В процессе игры из мешка, случайным образом, вынимают бочонки. Число, которое обозначено на вынутом бочонке вычеркивается в билете лото, а бочонок возвращается в мешок. Билет лото считается выигрышным, и игра заканчивается, как только в каждом из пяти полей билета оказалось, по меньшей мере, вычеркнуто одно число. Сколько раз в среднем надо вынуть бочонок из мешка, чтобы билет лото стал выигрышным?
Задачу решили:
11
всего попыток:
18
В мешке есть шары 3 различных цветов. Поочередно берут один шар, смотрят на его цвет и кладут обратно в мешок. Оказалось, для того чтобы вынуть хотя-бы раз шар каждого цвета, требуется в среднем 937/105 попыток. Какое минимальное количество шаров может быть в мешке?
Задачу решили:
15
всего попыток:
19
В правильной треугольной пирамиде SABC с основанием ABC точки M и K – середины рёбер AB и SC соответственно, а точки N и L отмечены на рёбрах SA и BC соответственно так, что отрезки MK и NL пересекаются, а |AN|=4|NS|. Найдите отношение |CL|:|LB|.
(Задача из реального теста ЕГЭ 2024.)
Задачу решили:
19
всего попыток:
72
Дедушке прописали принимать по полтаблетки каждый день в течение 60 дней. В пузырьке было 30 целых таблеток. В первый день он вытряхнул из пузырька таблетку и разломал ее пополам, одну половинку принял, а вторую положил обратно в пузырёк. Каждый следующий день он случайным образом вытряхивал из пузырька таблетки - если это оказывалась целая таблетка, то он ее разламывал и принимал половинку, а вторую клал в пузырёк, если выпадала половинка, то он принимал её. На какой день с вероятностью не менее 1/2 выпадет половинка таблетки?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|