Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
139
всего попыток:
540
А на какое наименьшее (но большее 1) число квадратов, среди которых нет двух равных, можно разбить квадрат? Если Вы считаете, что такое разбиение невозможно, то введите 0.
(См. также задачу "Прямоугольник из разных квадратов".)
Задачу решили:
143
всего попыток:
210
100 пассажиров по очереди заходят в самолет, имеющий 100 мест. Первой заходит старушка и садится на любое место. Каждый следующий пассажир занимает место, указанное в его билете, если это возможно; в противном случае — любое из оставшихся свободных мест. Какова вероятность, что последнему пассажиру достанется место, указанное в его билете?
Задачу решили:
199
всего попыток:
820
С вероятностью 1/2 письмо спрятано в столе, при этом оно может находиться в каждом из его четырёх ящиков с равной вероятностью. После того, как в поисках письма случайным образом открыли три ящика, выяснилось, что письма в них нет. Сколько процентов составляет вероятность того, что письмо лежит в четвёртом ящике?
Задачу решили:
54
всего попыток:
795
Играют двое. У первого есть монеты достоинством в 2 рубля и 5 рублей. Одну из них (по своему выбору) он зажимает в кулаке, а второй игрок пытается угадать, что это за монета. Если тот угадывает, то получает монету, а если нет, то платит первому игроку m копеек. Найдите наибольшее целое m, при котором игра выгодна второму игроку.
Задачу решили:
98
всего попыток:
328
Кот Матроскин и пёс Шарик договорились встретиться возле большого дуба в течение 25 минут, чтобы вместе отправиться за кладом. Было условлено, что каждый будет ждать ровно 10 минут — ведь очень хочется выкопать сокровища поскорее. Сколько процентов составляет вероятность того, что друзья откопают клад вдвоем, при условии, что все моменты появления каждого из них в течение оговоренных 25 минут равновероятны. (Точнее, моменты их появления — независимые равномерно распределённые случайные величины.)
Задачу решили:
80
всего попыток:
325
Три студента живут в одной комнате в общежитии. К концу месяца они испытывают серьезные финансовые затруднения и решают «сброситься», чтобы на собранную сумму купить необходимые продукты. Нужно собрать 1000 рублей. Каждый заявляет, что уж 500 рублей у него есть. Но, скорее всего, они преувеличивают: реальное количество денег у каждого из них может с равной вероятностью и независимо от других оказаться любой суммой от сушеного комара в кошельке до заявленного максимума в 500 рублей. Сколько процентов составляет вероятность продовольственного кризиса для бедняг-студентов в данных обстоятельствах? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
36
всего попыток:
56
Найдите вероятность того, что n случайно и независимо выбранных на окружности точек лежат на одной полуокружности.
Задачу решили:
116
всего попыток:
317
У Маши две монетки. Одна монетка — честная, у другой вместо решки — второй орёл. Она наудачу выбрала из этих двух монеток одну и бросила её три раза. Все три раза выпал орёл. Какова вероятность того, что эта монетка — честная? Ответ введите в виде несократимой дроби p/q, набранной без пробелов.
Задачу решили:
45
всего попыток:
143
Вася написал программу, описывающую подбрасывание нечестной монетки. Первый раз всегда выпадает орёл, второй раз — решка. Начиная с третьего броска вероятность выпадения орла равна отношению числа выпавших до этого орлов к числу произведённых до этого бросков. Например, вероятность выпадения орла при третьем броске равна 1/2, ибо до этого выпали ровно один орёл и ровно одна решка. С какой вероятностью при первых 300 бросках 200 раз выпадет орёл и 100 раз — решка? (Ответ введите в виде несократимой дроби p/q, где p и q — натуральные числа.)
Задачу решили:
48
всего попыток:
152
У Васи есть 40 карандашей, все разной длины. Он хочет их разложить на столе в два ряда по 20 так, чтобы в каждом ряду их длины были упорядочены по возрастанию, а еще в каждой из 20 пар (карандаши, лежащие друг под другом) верхний карандаш был бы длиннее нижнего. Сколькими способами он может это сделать?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|