img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 113
всего попыток: 188
Задача опубликована: 21.05.09 21:06
Прислал: demiurgos img
Источник: Дж. Литлвуд "Математическая смесь"
Вес: 1
сложность: 5 img
баллы: 100

В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Но на этот раз и лиса, и заяц могут бегать по всей арене (ср. с задачей 102). Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.)

Пояснения: лиса и заяц — точки на круге; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.

Задачу решили: 110
всего попыток: 715
Задача опубликована: 30.05.09 14:13
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: Anton_Lunyov

Окружим Землю вдоль экватора ремнём, так чтобы он плотно прилегал к поверхности по всей длине. Землю будем считать идеальным шаром с радиусом 6 400 000 метров. Увеличим длину ремня на 1 метр. Теперь возьмём за одну точку ремня и натянем его так, чтобы ремень плотно прилегал к противоположной точке экватора, в результате точка, за которую мы потянули, поднимется над экватором на некоторую высоту. Чему будет равна эта высота? В ответе укажите ближайшее целое число метров. 

Задачу решили: 139
всего попыток: 540
Задача опубликована: 13.07.09 00:38
Прислал: demiurgos img
Источник: Г.Штейнгауз "Математический калейдоскоп"
Вес: 1
сложность: 5 img
баллы: 100
Лучшее решение: fedyakov

А на какое наименьшее (но большее 1) число квадратов, среди которых нет двух равных, можно разбить квадрат? Если Вы считаете, что такое разбиение невозможно, то введите 0.

(См. также задачу "Прямоугольник из разных квадратов".)
Задачу решили: 33
всего попыток: 430
Задача опубликована: 13.12.09 19:11
Прислал: bbny img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: ghost

Припишем каждой букве русского языка свой номер: А–1, Б–2, ..., Я–33 (включаем все: Ё, Й, Ъ, и т.д.). Попытаемся разместить на плоскости несчётное множество букв А, несчётное множество букв Б, и так до буквы Я. Одинаковые буквы могут быть разного размера, но не могут иметь общих точек. Укажите сумму номеров букв, для которых это можно сделать.

Замечания: 1) Каждая буквая — это объединение точек, отрезков и дуг окружностей; у букв нет никаких украшений, закорючек и выступов, например, буква Г состоит из двух отрезков, образующих прямой угол, буква Д — это буква П (три отрезка), стоящая на подставке, похожей на П, но более широкой и низкой, буква К — угол, примыкающий к отрезку, буква Ж — симметрия с буквой К, буква О — объединение четырёх дуг окружностей, буква З — правая половина конструкции из двух касающихся равных окружностей, стоящих друг на друге, буква Й — дуга над тремя отрезками, буква С — три дуги от буквы О, буква Р — конструкция из двух отрезков и дуги окружности, примыкающая к вертикальному отрезку вверху и посередине, буква Л — два отрезка, образующие острый угол, и т.д. 2) Бесконечное множество называется несчётным, если оно не допускает взаимно однозначного отображения на множество натуральных чисел. Например, числовая прямая, отрезок ненулевой длины, окружность и плоскость представляют собой несчётные множества точек. Ну, а рациональные числа образуют, наоборот, счётное множество.

Задачу решили: 78
всего попыток: 203
Задача опубликована: 11.08.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На плоскости проведены две окружности с радиусами 5 и 9 так, что расстояние между их центрами равно 2. Какое наибольшее число непересекающихся кругов можно нарисовать на плоскости так, чтобы каждый из них касался обеих окружностей?

Задачу решили: 77
всего попыток: 279
Задача опубликована: 12.11.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Даны четырёхугольник ABCD, в котором ΑΒ=25, BC=17, CD=26, DA=15; и ещё две точки: точка E на стороне AB и точка F на стороне CD такие, что AE=10, EB=15, CF=9 и FD = 17. Пусть K - точка пересечения отрезков AF и DE, L - точка пересечения отрезков EC и BF, M - точка пересечения отрезков AC и BD. Чему равен угол KML (в градусах, округляя до целого числа)?

Задачу решили: 37
всего попыток: 133
Задача опубликована: 05.10.12 08:00
Прислал: leonid img
Источник: Пособие для учащихся Э.Г.Готмана
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В прямоугольной декартовой системе координат заданы три точки: K(41;29), L(-15;22), M(15;-23). Известно, что они являются вершинами равносторонних треугольников BCK, CAL и ABM, построенных на сторонах некоторого треугольника АВС и лежащих вне его. Найдите координаты вершин треугольника АВС. В ответе укажите сумму координат вершины В, округлив её до ближайшего целого числа.

Задачу решили: 30
всего попыток: 406
Задача опубликована: 24.10.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Angelina

Дан треугольник ABC.

Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC.

Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED.

Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE.

И так далее по алфавиту почти до конца: последний треугольник - WXY.

Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6?

Задачу решили: 40
всего попыток: 48
Задача опубликована: 10.06.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
баллы: 100

Пусть A — конечное множество точек плоскости, каждая из которых покрашена в черный или белый цвет. Множество A называется неразделимым, если для любой прямой l, не содержащей точек A, найдутся точки разного цвета по одну сторону от l. Пусть M — неразделимое множество, никакие три точки которого не лежат на одной прямой. Найдите разность между количеством неразделимых подмножеств М с четным числом точек и количеством неразделимых подмножеств М с нечетным числом точек.

Задачу решили: 23
всего попыток: 107
Задача опубликована: 21.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.