Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
39
всего попыток:
114
Для натурального числа n обозначим C(n) количество натуральных чисел x меньших n, для которых x2+x+1 делится на n. Чему равно C(p), если p — простое? В ответе напишите без пробелов значения C(k·2k−1) при k=115, 123, 249, 362 и 384. Учтите, что числа k·2k−1 являются простыми при всех указанных значениях k.
Задачу решили:
51
всего попыток:
314
M сообщает P и S , что имеются два натуральных числа, Чему равна максимальная сумма чисел?
Задачу решили:
37
всего попыток:
58
Пусть Pn(x)=(x-1)(x-2)...(x-n), n=1, 2, 3, ..., 2015. Каждый Pn(x) запишем как многочлен от (x-2016) и рассмотрим свободные члены Qn. Например, P1(x)=(x-2016)+2015. Найти (Q1+Q2+...+Q2015)/2015!, ответ округлите до ближайшего целого.
Задачу решили:
35
всего попыток:
87
Пусть целые положительные числа a ≥ b такие, что (a+1)/b + (b+1)/a - тоже целое. Найдите сумму всех таких a меньших 1000.
Задачу решили:
19
всего попыток:
41
Рассмотрим число n=1096375199328173. Рассмотрим все натуральные числа от 1 до n-1 включительно. Рассмотрим остатки от деления квадратов этих чисел на n. Сколько всего получится различных остатков?
Задачу решили:
28
всего попыток:
57
Рассмотрим число n=106. Найдите сумму:
Задачу решили:
28
всего попыток:
53
Назовём натуральное число интересным, если его запись в десятичной системе счисления состоит из чётного количества цифр и его «левая половина» равна его «правой половине». Например, 2020 - это интересное число. Найдите наименьшее интересное число, являющееся квадратом целого числа.
Задачу решили:
19
всего попыток:
44
Расмотрим простое число p=1000000007=109+7 и все целые числа n, которые не делятся на p. Какие значения, не превосходящие 14, может принимать остаток от деления n2 на p? Введите ответ в виде строки из 14-и НУЛЕЙ и ЕДИНИЦ, где на k-м месте (слева) стоит ЕДИНИЦА, если остаток от деления n2 на p может принимать значение k, а в противном случае - НОЛЬ.
Задачу решили:
9
всего попыток:
16
Первые сто простых чисел написаны мелом на ста досках (по одному числу на каждой доске). Разрешена такая операция: если на каких-то двух досках написаны числа a и b, a≤b, то можно их заменить на числа 2a и b-a. Какое максимальное количество чисел на досках можно обнулить посредством таких операций?
Задачу решили:
20
всего попыток:
25
Натуральное число делится без остатка на 4, на 9, на 49, и имеет 45 делителей, среди которых 1 и само это число. Найдите все такие натуральные числа. В ответе укажите их сумму.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|