img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Mangoost решил задачу "REBUSы" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 29
всего попыток: 82
Задача опубликована: 13.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Какое .максимальное число шаров радиуса 1/2 можно вложить в прямоугольный параллелепипед размером 10×10×1.

+ 6
  
Задачу решили: 27
всего попыток: 80
Задача опубликована: 25.01.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В кубе ABCDA1B1C1D1 с ребром 6 проведен отрезок, соединяющий вершину A куба с центром грани A1B1C1D1. Этот отрезок начинает непрерывно «скользит» своими концами по двум скрещивающимся диагоналям AC и B1D1 противоположных граней куба, не меняя своей длины. Двигаясь таким образом, отрезок задает линейчатую поверхность, изображенную на рисунке.

Объем тела

Объём тела, ограниченного этой поверхностью, будет иметь вид kπ. В ответе укажите числовой множитель k.

Задачу решили: 4
всего попыток: 5
Задача опубликована: 08.02.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: bbny

На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку:

Квадрат на тетрадке в клеточку – 2

На том же рисунке также изображён квадрат размером 8x8, в котором данное полиомино помещается целиком.

В этом примере полиомино занимает на листе тетрадки 9 строк и 9 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами -3/5 и 5/3. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата.

Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:
1. Для полиомино существует квадрат 8x8, в котором оно помещается целиком.
2. Полиомино является «максимальным»: Если к нему добавить хотя бы одну клетку, то уже не существует квадрат 8x8, в котором оно будет помещаться целиком.

Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим:
n1 – Количество полиомино, занимающих 8 строк и 8 столбцов;
n2 – Количество полиомино, занимающих 8 строк и 9 столбцов (или наоборот);
n3 – Количество полиомино, занимающих 9 строк и 9 столбцов;
n4 – Количество полиомино, занимающих 9 строк и 10 столбцов (или наоборот);
n5 - Количество полиомино, занимающих 10 строк и 10 столбцов.

В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5

Задачу решили: 31
всего попыток: 54
Задача опубликована: 05.04.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Элементами матрицы 3х3 являются натуральные числа от 1 до 9, взятые по одному разу. Найдите наибольшее значение определителя этой матрицы.

(Задачу придумал и решил сам, в печати не приходилось встречать такую задачу. Не уверен, что ее до сих пор никто не придумал.)
Задачу решили: 25
всего попыток: 88
Задача опубликована: 09.06.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

При некоторых значениях k на синусоиде y= ksinx можно расположить квадрат, все вершины которого лежат на синусоиде, а его центр совпадает с началом координат. Один из квадратов изображен на рисунке.

Квадраты и синусоида

Сколько таких квадратов существует при k =14?

Задачу решили: 20
всего попыток: 100
Задача опубликована: 09.08.21 08:00
Прислал: DOMASH img
Источник: Авторская
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Концы ломаной из двух звеньев совпадают с серединами противоположных сторон правильного шестиугольника со стороной 1.

Шестой шестиугольник

Это первый целочисленный шестиугольник. Концы  ломаной из трёх звеньев совпадают с серединами  противоположных сторон правильного шестиугольника со стороной 2. Это второй целочисленный шестиугольник (смотрите рисунок). Сколько звеньев у ломаной, соединяющей середины противоположных сторон шестого по размерам правильного целочисленного  шестиугольника? Ломаная строится как змейка: первое звено равно 1, каждое последующее на 1 больше предыдущего; угол межу соседними звеньями равен Pi/3.

Задачу решили: 24
всего попыток: 59
Задача опубликована: 01.09.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Sam777e

На рисунке изображены правильный 6-угольник со стороной 7 и ломаная из 14-и звеньев, длины которых составляют арифметическую прогрессию: 1, 2, 3, ... Углы между соседними звеньями – 60°.

Шестиугольник и ломанная - 2

Ломаная – несамопересекающаяся. Она соединяет середины двух противоположных сторон 6-угольника.

Однако, существуют и другие ломаные, обладающие всеми этими свойствами, кроме количество звеньев.

Найдите минимально возможное количество звеньев.

Замечание. Задача кажется очень похожей на задачу № 2215, но на самом деле это не совсем так. Вместе с тем, дальнейшее продолжение "сериала" не планируется.

(Я задумал эти две задачи как забавы ("головоломки") типа разрезания-склеивания. Но zmerch показал очень приличный АЛГОРИТМ их решения, и я решил "поднять их ранг".)
Задачу решили: 15
всего попыток: 48
Задача опубликована: 10.11.21 08:00
Прислал: avilow img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Любитель кубика Рубика снял все 54 наклейки с кубика 3х3х3 и переклеил их вновь в случайном порядке. Какова вероятность собрать такой кубик Рубика? Собранным считается кубик, у которого все грани одного цвета. В качестве ответа введите число из первых трёх цифр вероятности, опуская начальные нули. Например, если вероятность равна 0,00040756…, то в ответ вносится число 407.

Задачу решили: 14
всего попыток: 16
Задача опубликована: 29.11.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Рассмотрим множество чисел M = {1, 2, 3, ..., 214 - 1}. Определим на этом множестве операцию «циклического сложения»:
xy = [(x+y) / 214] + (x+y) mod 214
(целая часть от деления x+y на 214 + остаток от деления x+y на 214).

Например:
123  456 = [(123+456) / 214] + (123+456) mod 214  = 0 + 579 = 579

16380  7 = [(16380+7) / 214+ (16380+7) mod 214  = 1 + 3 = 4

Докажите, что эта операция определяет группу на множестве M и найдите её нейтральный элемент? Введите его в двоичной системе счисления.

+ 6
  
Задачу решили: 24
всего попыток: 51
Задача опубликована: 10.12.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

На рисунке изображен октаэдр, вписанный в куб. Две его вершины О1 и О2 лежат в центрах противоположных граней куба, а вершины A, B, C и D – середины ребер куба, перпендикулярных этим граням.

Кристалл

У куба три пары противоположных граней, поэтому в него можно вписать таким образом три октаэдра. Какую часть куба составляет объем общей части этих трех октаэдров.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.