Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
33
всего попыток:
430
Припишем каждой букве русского языка свой номер: А–1, Б–2, ..., Я–33 (включаем все: Ё, Й, Ъ, и т.д.). Попытаемся разместить на плоскости несчётное множество букв А, несчётное множество букв Б, и так до буквы Я. Одинаковые буквы могут быть разного размера, но не могут иметь общих точек. Укажите сумму номеров букв, для которых это можно сделать.
Задачу решили:
199
всего попыток:
820
С вероятностью 1/2 письмо спрятано в столе, при этом оно может находиться в каждом из его четырёх ящиков с равной вероятностью. После того, как в поисках письма случайным образом открыли три ящика, выяснилось, что письма в них нет. Сколько процентов составляет вероятность того, что письмо лежит в четвёртом ящике?
Задачу решили:
54
всего попыток:
795
Играют двое. У первого есть монеты достоинством в 2 рубля и 5 рублей. Одну из них (по своему выбору) он зажимает в кулаке, а второй игрок пытается угадать, что это за монета. Если тот угадывает, то получает монету, а если нет, то платит первому игроку m копеек. Найдите наибольшее целое m, при котором игра выгодна второму игроку.
Задачу решили:
135
всего попыток:
195
В сплошном шаре сверлится вертикальное цилиндрическое отверстие, ось которого проходит через центр шара. Высота полученного тела равна 6 см. Сколько см3 составляет его объём? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
98
всего попыток:
328
Кот Матроскин и пёс Шарик договорились встретиться возле большого дуба в течение 25 минут, чтобы вместе отправиться за кладом. Было условлено, что каждый будет ждать ровно 10 минут — ведь очень хочется выкопать сокровища поскорее. Сколько процентов составляет вероятность того, что друзья откопают клад вдвоем, при условии, что все моменты появления каждого из них в течение оговоренных 25 минут равновероятны. (Точнее, моменты их появления — независимые равномерно распределённые случайные величины.)
Задачу решили:
80
всего попыток:
325
Три студента живут в одной комнате в общежитии. К концу месяца они испытывают серьезные финансовые затруднения и решают «сброситься», чтобы на собранную сумму купить необходимые продукты. Нужно собрать 1000 рублей. Каждый заявляет, что уж 500 рублей у него есть. Но, скорее всего, они преувеличивают: реальное количество денег у каждого из них может с равной вероятностью и независимо от других оказаться любой суммой от сушеного комара в кошельке до заявленного максимума в 500 рублей. Сколько процентов составляет вероятность продовольственного кризиса для бедняг-студентов в данных обстоятельствах? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
78
всего попыток:
203
На плоскости проведены две окружности с радиусами 5 и 9 так, что расстояние между их центрами равно 2. Какое наибольшее число непересекающихся кругов можно нарисовать на плоскости так, чтобы каждый из них касался обеих окружностей?
Задачу решили:
36
всего попыток:
56
Найдите вероятность того, что n случайно и независимо выбранных на окружности точек лежат на одной полуокружности.
Задачу решили:
77
всего попыток:
279
Даны четырёхугольник ABCD, в котором ΑΒ=25, BC=17, CD=26, DA=15; и ещё две точки: точка E на стороне AB и точка F на стороне CD такие, что AE=10, EB=15, CF=9 и FD = 17. Пусть K - точка пересечения отрезков AF и DE, L - точка пересечения отрезков EC и BF, M - точка пересечения отрезков AC и BD. Чему равен угол KML (в градусах, округляя до целого числа)?
Задачу решили:
116
всего попыток:
317
У Маши две монетки. Одна монетка — честная, у другой вместо решки — второй орёл. Она наудачу выбрала из этих двух монеток одну и бросила её три раза. Все три раза выпал орёл. Какова вероятность того, что эта монетка — честная? Ответ введите в виде несократимой дроби p/q, набранной без пробелов.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|