Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
48
Пусть A — конечное множество точек плоскости, каждая из которых покрашена в черный или белый цвет. Множество A называется неразделимым, если для любой прямой l, не содержащей точек A, найдутся точки разного цвета по одну сторону от l. Пусть M — неразделимое множество, никакие три точки которого не лежат на одной прямой. Найдите разность между количеством неразделимых подмножеств М с четным числом точек и количеством неразделимых подмножеств М с нечетным числом точек.
Задачу решили:
74
всего попыток:
96
Найти максимальное значение параметра a, при котором верно неравенство: ax2-2x > 3a-1 для всех x <0.
Задачу решили:
56
всего попыток:
150
Известно, что a2+4b2=4 и cd=4. Чему равен минимум выражения (a-d)2+(b-c)2? Ответ укажите с точностью до 2-х знаков после запятой.
Задачу решили:
77
всего попыток:
80
Найти максимальное значение x+y, если известно, что y(x+y)2=9 и y(x3-y3)=7.
Задачу решили:
89
всего попыток:
99
Про функцию f(x) известно, что f(1) = 1, и для любых x, y выполнено тождество f(x+y) = 2xf(y)+3yf(x). Найдите f(15).
Задачу решили:
59
всего попыток:
62
Найдите максимальное значение f(1) если f: Z ? Z такая, что для любых целых чисел х и у выполнено равенство f(f(x)+y+1) = x+f(y)+1.
Задачу решили:
55
всего попыток:
69
Найдите f(2012) если f: NxN такая, что f(m–n+f(n)) = f(m)+f(n) при всех m, n из N.
Задачу решили:
15
всего попыток:
181
Найти количество целых чисел n (2 ≤ n ≤ 100) для которых существует многочлен p(x) с действительными коэффициентами и степени меньшей n такой, что для всех целых x, p(x) является целым числом, тогда и только тогда, если x не кратно n.
Задачу решили:
24
всего попыток:
116
Последовательности действительных чисел an, bn (n=0,1, ...) заданы так, что a1=α, b1=β и an+1=αan-βbn, bn+1=βan+αbn для всех n≥1. Найдите количество пар числ (α,β) не равных нулю, таких что a1997=b1 и b1997=a1.
Задачу решили:
23
всего попыток:
107
Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|