img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 36
всего попыток: 56
Задача опубликована: 03.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: bbny

Найдите вероятность того, что n случайно и независимо выбранных на окружности точек лежат на одной полуокружности.

Задачу решили: 77
всего попыток: 279
Задача опубликована: 12.11.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Даны четырёхугольник ABCD, в котором ΑΒ=25, BC=17, CD=26, DA=15; и ещё две точки: точка E на стороне AB и точка F на стороне CD такие, что AE=10, EB=15, CF=9 и FD = 17. Пусть K - точка пересечения отрезков AF и DE, L - точка пересечения отрезков EC и BF, M - точка пересечения отрезков AC и BD. Чему равен угол KML (в градусах, округляя до целого числа)?

Задачу решили: 116
всего попыток: 317
Задача опубликована: 27.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: bbny

У Маши две монетки. Одна монетка — честная, у другой вместо решки — второй орёл. Она наудачу выбрала из этих двух монеток одну и бросила её три раза. Все три раза выпал орёл. Какова вероятность того, что эта монетка  — честная? Ответ введите в виде несократимой дроби p/q, набранной без пробелов.

Задачу решили: 112
всего попыток: 150
Задача опубликована: 29.11.10 12:00
Прислал: Rep img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найдите остаток от деления числа (2010!)2011 на 2011 (n! означает произведение всех натуральных чисел от 1 до n).

Задачу решили: 45
всего попыток: 143
Задача опубликована: 18.12.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: casper

Вася написал программу, описывающую подбрасывание нечестной монетки. Первый раз всегда выпадает орёл, второй раз — решка. Начиная с третьего броска вероятность выпадения орла равна отношению числа выпавших до этого орлов к числу произведённых до этого бросков. Например, вероятность выпадения орла при третьем броске равна 1/2, ибо до этого выпали ровно один орёл и ровно одна решка. С какой вероятностью при первых 300 бросках 200 раз выпадет орёл и 100 раз — решка? (Ответ введите в виде несократимой дроби p/q, где p и q — натуральные числа.)

Задачу решили: 86
всего попыток: 151
Задача опубликована: 10.01.11 08:00
Прислал: demiurgos img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Mangoost (Сергей Савинов)

Многочлен степени 2010 имеет 2010 действительных различных корней. Найдите наименьшее число его ненулевых коэффициентов.

Задачу решили: 50
всего попыток: 142
Задача опубликована: 11.01.11 08:00
Прислал: demiurgos img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 4 img
баллы: 100

Две треугольные пирамиды центрально симметричны относительно общей вершины, объём каждой пирамиды — 2010. Найдите объём фигуры, состоящей из середин всех отрезков, концы которых принадлежит разным пирамидам.

Задачу решили: 48
всего попыток: 152
Задача опубликована: 17.01.11 08:00
Прислал: Mangoost img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: Sam777e

У Васи есть 40 карандашей, все разной длины. Он хочет их разложить на столе в два ряда по 20 так, чтобы в каждом ряду их длины были упорядочены по возрастанию, а еще в каждой из 20 пар (карандаши, лежащие друг под другом) верхний карандаш был бы длиннее нижнего. Сколькими способами он может это сделать?

Задачу решили: 46
всего попыток: 100
Задача опубликована: 19.01.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: perfect_result... (Александр Опарин)

Сколько различных чисел встречается среди остатков от деления на n чисел 13, 23, 33, ..., (n−1)3, n3, где n=9699690·2011?

Задачу решили: 48
всего попыток: 111
Задача опубликована: 14.02.11 08:00
Прислал: Busy_Beaver img
Источник: Putnam Competition
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: zhekas (Евгений Сыромолотов)

Петя подбрасывает честную игральную кость (каждое из чисел 1, 2, 3, 4, 5, 6 выпадает с вероятностью 1/6) несколько раз подряд, пока суммарное количество очков не станет равным n или не превысит n. Пусть P(n) — вероятность того, что после последнего броска суммарное число очков будет равно n. Найти предел P(n), когда n стремится к бесконечности. (Ответ представьте в виде несократимой дроби p/q, где p и q — натуральные числа.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.