Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
39
всего попыток:
68
На сторонах квадрата выбираются случайным образом 3 точки. Найдите вероятность того, что центр квадрата находится внутри треугольника, построенного по выбранным точкам.
Задачу решили:
28
всего попыток:
51
Даны два правильных тетраэдра с ребрами длины 21/2, переводящихся один в другой при центральной симметрии. Пусть F — множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры F.
Задачу решили:
38
всего попыток:
103
Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?
Задачу решили:
46
всего попыток:
86
В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины — его сын, а справа — его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?
Задачу решили:
59
всего попыток:
132
Вероятность появления автомобиля на шоссе за 30-минутный период составляет 0.95. Какова вероятность его появления за 10 минут? (Ответ укажите с точностью до второго знака после запятой.)
Задачу решили:
29
всего попыток:
36
Определим расстояние между числами a1a2a3a4a5 и b1b2b3b4b5 максимальное i, для которого ai ≠ bi. Найти минимально возможную сумму расстояний между всеми соседними пятизначными числами, расположенными, расположенными в некотором порядке.
Задачу решили:
30
всего попыток:
55
Вовочка нашел наименьшее натуральное число, которое представяляет в виде суммы 2002 натуральных чисел, у которых одинаковая сумма цифр. Но, что удивительно, то его же можно представить в виде суммы 2003 чисел, обладающих таким же свойстовм относительно суммы цифр. Что это за число?
Задачу решили:
24
всего попыток:
42
Имеется 100 предметов, которые вместе весят 1000 грамм. Число m будем называть средним, если можно отобрать m предметов, которые весят 500 грамм. Какое максимальное количество средних чисел возможно?
Задачу решили:
27
всего попыток:
45
Таблице из 9 строк и 2016 столбцов заполнена числами от 1 до 2016, каждое — по 9 раз. При этом в любом столбце числа различаются не более, чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Задачу решили:
41
всего попыток:
115
Найдите количество комплексных чисел a+bi (a и b - целые), для которых существует комплексное число c+di (c и d - тоже целые), таких, что произведение: (a+bi)(c+di) = 16.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|