Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
291
всего попыток:
684
В тюрьму поместили 20 узников. Надзиратель сказал им: «Я дам вам вечер поговорить друг с другом, а утром построю всех в колонну, надену каждому на голову красный, жёлтый или зелёный колпак, а потом спрошу каждого в указанном вами порядке, каков цвет надетого на него колпака. Сколько будет правильных ответов, стольких из вас я отпущу на свободу. Остальных скормлю крокодилам. Кого конкретно — решит жребий. Каждый узник будет слышать все ответы, но сможет увидеть колпаки всех тех и только тех, кто стоит впереди в колонне. Отвечать нужно обязательно, причём только "красный", "жёлтый" или "зелёный", и сразу — пауза перед вопросом будет достаточной для размышлений. Таковы условия, если замечу жульничество — скормлю крокодилам всех!» Какому максимальному числу счастливчиков узники смогут гарантировать освобождение?
Задачу решили:
62
всего попыток:
484
В тюрьму поместили 6 узников. Надзиратель сказал им: «Я дам вам сегодня поговорить друг с другом, а потом рассажу по отдельным камерам, и общаться вы больше не сможете. Завтра я вас по очереди отведу в комнату, где стоят 6 закрытых ящиков, в которые я положу разные номера от 1 до 6 (в каждый ящик по номеру), и разрешу открыть 3 любые ящика в произвольном порядке. Каждый из вас должен открыть ящик с номером своей очереди, а какой именно номер лежит в ящике вы увидите, как только его откроете. Если каждому из вас удастся открыть ящик с нужным номером, то я всех выпущу на свободу. А если хоть кто-то потерпит неудачу — скормлю всех крокодилам. Не волнуйтесь, я великодушен — перед приходом следующего узника я буду просто закрывать все ящики и не буду ни переставлять их, ни перекладывать номера. Я даже могу всех вас сегодня отвести в эту комнату и разрешить пометить ящики! А номера в них я положу потом.» Какова максимальная вероятность освобождения узников при их правильной стратегии?
Задачу решили:
24
всего попыток:
59
На рисунке изображены правильный 6-угольник со стороной 7 и ломаная из 14-и звеньев, длины которых составляют арифметическую прогрессию: 1, 2, 3, ... Углы между соседними звеньями – 60°. Ломаная – несамопересекающаяся. Она соединяет середины двух противоположных сторон 6-угольника. Однако, существуют и другие ломаные, обладающие всеми этими свойствами, кроме количество звеньев. Найдите минимально возможное количество звеньев. Замечание. Задача кажется очень похожей на задачу № 2215, но на самом деле это не совсем так. Вместе с тем, дальнейшее продолжение "сериала" не планируется.
(Я задумал эти две задачи как забавы ("головоломки") типа разрезания-склеивания. Но zmerch показал очень приличный АЛГОРИТМ их решения, и я решил "поднять их ранг".)
Задачу решили:
4
всего попыток:
47
На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку: На том же рисунке также изображён квадрат размером 9x9, в котором данное полиомино помещается целиком. В этом примере полиомино занимает на листе тетрадки 10 строк и 11 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами 2 и -1/2. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата. Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:
Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим: В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|