Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
45
всего попыток:
196
Рассмотрим множество парабол, уравнения которых имеют вид y=ax²+b, где a и b принимают все целые значения от 1 до 10 включительно. Т.е. всего 100 парабол. Сколько в этом множестве пар подобных парабол?
Задачу решили:
32
всего попыток:
49
Дан треугольник A1A2A3 со сторонами A1A2=21, A2A3=17, A1A3=10. Воробей вначале сел в точку A4 пересечения медиан треугольника A1A2A3, затем прыгнул в точку A5 пересечения медиан треугольника A2A3A4, затем прыгнул в точку A6 пересечения медиан треугольника A3A4A5, и т.д. Прыгая так бесконечно долго, воробей стремится к некоторой точке A. Найдите сумму квадратов расстояний от точки A до всех вершин треугольника A1A2A3.
Задачу решили:
30
всего попыток:
45
Николай начертил две равновеликие фигуры: правильный пятиугольник с прямыми углами при вершинах и правильный треугольник. Чему равны углы при вершинах треугольника в градусах?
Задачу решили:
33
всего попыток:
50
Найдите площадь фигуры, ограниченной кривой: 13x2 + 10xy + 13y2 = 72. Ответ округлите до двух знаков после запятой.
Задачу решили:
4
всего попыток:
47
На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку: На том же рисунке также изображён квадрат размером 9x9, в котором данное полиомино помещается целиком. В этом примере полиомино занимает на листе тетрадки 10 строк и 11 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами 2 и -1/2. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата. Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:
Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим: В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5
Задачу решили:
21
всего попыток:
36
Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Найдите соотношение плошади полученной в центре части к площади исходного квадрата, когда n стремится к бесконечности. В ответе укажите целую часть этого соотношения, умноженного на 10000. На рисунке приведен квадрат со стороной 40, в который вписаны 39 меньших квадратов.
Задачу решили:
13
всего попыток:
29
Правильный пятиугольник имеет сторону длины n, n∈N. Все стороны пятиугольника разделены точками на единичные отрезки. В этот пятиугольник вписаны n-1 правильных пятиугольников, все вершины которых находятся в точках деления. На рисунке приведен правильный пятиугольник со стороной 7, в который вписаны 6 меньших правильных пятиугольников. Найдите количество таких n (1<n<200), для которых количество полученных частей НЕ равно 5*(n-1)2+1.
Задачу решили:
12
всего попыток:
16
Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне неподвижной окружности. Гипотрохоида задается тремя параметрами: R — радиус неподвижной окружности, r — радиус вращающейся окружности, d — расстояние от фиксированной точки до центра вращающейся окружности. На рисунке приведена гипотрохоида с параметрами R=11, r=7, d=11, которая делит плоскость на 35 частей. На сколько частей разделит плоскость гипотрохоида с параметрами R = p101, r = p100, d = p101, где p100 и p101 — простые числа с номерами 100 и 101?
Задачу решили:
13
всего попыток:
29
В прямоугольник с целочисленными взаимно простыми длинами сторон вписан прямоугольник с различными целочисленными сторонами так, что все его углы лежат на различных сторонах исходного четырехугольника. Одна из сторон вписанного четырехугольника в 2 раза меньше одной из сторон исходного. Минимально возможный (по площади) такой четырехугольник имеет размеры 10x11 со вписанным четырехугольником 5х10. Найдите вторую минимально возможную площадь исходного четырехугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|