Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
67
всего попыток:
101
Известно, что 12x1+22x2+32x3+...+2002 x200≤2040000, где x1, x2, x3 ,…. X200 принимают значения 0 или 1. Найти максимальное значение 12x1+22x2+32x3+...+2002 x200.
Задачу решили:
67
всего попыток:
108
Кенгуру-чемпион может прыгать по прямой вправо и влево и совершать гигантские прыжки. Длина его первого прыжка составляет 1 м, второго — 2 м, третьего — 4 м и так далее (длина каждого прыжка всегда в два раза больше, чем предыдущего). Через какое минимальное количество прыжков кенгуру окажется на расстоянии D = 123456789123456789123456789 м от исходной точки O?
Задачу решили:
40
всего попыток:
72
Для n (100<=n<=200) найти все значения m<=n, такие, что последовательные биномиальные коэффициенты С(n,m), C(n,m+1), C(n,m+2) образуют арифметическую прогрессию. В ответе представить сумму найденных значений m с учетом их кратностей.
Задачу решили:
43
всего попыток:
112
Подмножество S действительных чисел строится следующим образом:
Задачу решили:
43
всего попыток:
281
Пусть . Найдите такое натуральное , что уравнение имеет ровно 4 различных действительных решения.
Задачу решили:
65
всего попыток:
105
Для натуральных чисел a, b, c справедливо равенство
Найдите значение a + b + c.
Задачу решили:
44
всего попыток:
86
Для функции f(x) при x>1 выполняется равенство:
Задачу решили:
46
всего попыток:
61
Последовательность целых чисел такова, что , , и для некоторого натурального k выполняется Также известно, что последовательность обладает следующим свойством Найдите значение .
Задачу решили:
87
всего попыток:
132
Найти минимальное значение выражения: x8+y8-3x2y2, х и у - действительные числа.
Задачу решили:
69
всего попыток:
88
Даны две арифметические прогрессии a1, a2… и b1, b2, …. (арифметическая прогрессия — это последовательность, в которой an = an–1+d, где d — некоторое число, единое для всей последовательности). Известно, что a1 = b1, и для каждого номера i остатки от деления ai и bi на i совпадают. Найдите значение выражения a2012- b2012.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|