Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
40
В четырехугольнике ABCD выполняются равенства |AB|=|BD|, угол ВАС=30°, угол ВСА=31°, угол DBC=3°. Найти угол BDC в градусах.
Задачу решили:
29
всего попыток:
34
Радиусы двух концентрических окружностей относятся как 1:2. Хорда большей окружности делится меньшей окружностью на три равные части. Найдите квадрат отношения этой хорды к диаметру большей окружности.
Задачу решили:
22
всего попыток:
23
Про четырехугольник ABCD известно следующее: угол DAB равен 150°, cумма углов DAC и ABD равна 120°, разность углов DBC и ABD равна 60°. Найти угол BDC в градусах.
Задачу решили:
25
всего попыток:
63
Сколько целых значений может иметь длина биссектрисы AD треугольника ABC, если |AB|=45 и |AC|=29 ?
Задачу решили:
22
всего попыток:
25
У прямоугольного листа ABCD угол BAD загибается так, что его вершина А попадает на сторону листа ВС. При этом получаются три прямоугольных треугольника, площади которых образуют арифметическую прогрессию. Если площадь наименьшего из треугольников равна 3, то чему равна площадь наибольшего из них? Ответ округлите до двух знаков после запятой.
Задачу решили:
24
всего попыток:
31
При сгибе прямоугольного листа бумаги с целочисленными сторонами, одна из которой равна 7, были совмещены две противоположные вершины. Найти длину линии сгиба при условии равенства её рациональному числу.
Задачу решили:
26
всего попыток:
28
На сторонах прямоугольного треугольника с гипотенузой, равной 13 и с суммой длин катетов, равной 15 построили во внешнюю сторону квадраты. Найти площадь шестиугольника, вершины которого являются вершинами квадратов, не связанных с треугольником.
Задачу решили:
28
всего попыток:
30
Периметр прямоугольного треугольника АВС (АВ - гипотенуза) равен 90. Длина катета АС больше 20. Окружность с радиусом 10, центр которой находится на катете ВС, касается прямых АВ и АС. Найти площадь треугольника АВС.
Задачу решили:
28
всего попыток:
32
Некая компания предложила 350 своим служащим выполнить сверхурочную работу, причем каждому мужчине предлагалось в виде вознаграждения 1000 рублей, а каждой женщине 815 рублей. Женщины все согласились с этим предложением, а часть мужчин отказалась. При подсчёте оказалось, что если бы в компании были только одни женщины, то общая сумма вознаграждения была такой же. Какова сумма вознаграждения, выплаченного всем женщинам?
Задачу решили:
30
всего попыток:
34
Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиуса 2, касающиеся её сторон и друг друга, причем K – одна из точек касания. Найдите площадь трапеции ABCD.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|