Лента событий:
DOMASH решил задачу "Гирлянда на ёлочке" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
27
всего попыток:
30
Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению. Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.
Задачу решили:
24
всего попыток:
78
Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.
Задачу решили:
22
всего попыток:
81
Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.
Задачу решили:
27
всего попыток:
38
В алфавите из n букв можно составлять слова в которых стоящие рядом буквы различны и из которых вычеркиванием букв нельзя получить слова вида abab, гда a и b различные. Найдите максимально возможную длину слова. В ответе укажите длину слова для n = 33.
Задачу решили:
26
всего попыток:
61
На какое максимальное число непересекающихся областей могут рассечь круг отрезки, соединяющие n точек, лежащих на его окружности? Ответ укахите для n = 12.
Задачу решили:
29
всего попыток:
70
Однажды на DIOFANT.RU было опубликовано 5 задач. Среди пользователей сайта не оказалось двух, кто решил одни и те же задачи. Если исключить любую задачу, то выбрав любого пользователя, можно найти и другого, решившего из оставшихся четырёх задач те же, что и он. Сколько пользователей решало задачи?
Задачу решили:
18
всего попыток:
36
Сколько существует квадратов, вершины которых находятся на узлах точечной сетки 100x2021? На рисунке изображён пример квадрата в точечной сетке 5x8.
Задачу решили:
15
всего попыток:
48
Любитель кубика Рубика снял все 54 наклейки с кубика 3х3х3 и переклеил их вновь в случайном порядке. Какова вероятность собрать такой кубик Рубика? Собранным считается кубик, у которого все грани одного цвета. В качестве ответа введите число из первых трёх цифр вероятности, опуская начальные нули. Например, если вероятность равна 0,00040756…, то в ответ вносится число 407.
Задачу решили:
30
всего попыток:
45
Сколькими способами можно разбить число 64 на 10 натуральных слагаемых, наибольшее из которых равно 12. (Разбиения, отличающиеся только порядком слагаемых, не считаются различными.)
Задачу решили:
18
всего попыток:
35
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|