img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 71
всего попыток: 142
Задача опубликована: 20.09.13 08:00
Прислал: leonid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Решите в целых числах уравнение (х- у2)2=16у+1. В ответе укажите сумму абсолютных величин компонент х и у всех решений.

Задачу решили: 39
всего попыток: 109
Задача опубликована: 21.10.13 08:00
Прислал: TALMON img
Источник: Литовский кружок
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество упорядоченных пар чисел (a,b) (0≤a,b≤10), для которых существует многочлен P(x) с целочисленными коэффициентами, и P(4)=a, P(11)=b?

Задачу решили: 63
всего попыток: 96
Задача опубликована: 01.11.13 08:00
Прислал: putout img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В прямоугольный треугольник, длины сторон которого составляют арифметическую прогрессию, вписана окружность, а в неё – ещё два прямоугольных треугольника. Один из этих треугольников подобен исходному («большому»), другой – равнобедренный. Площадь исходного  треугольника – S1, вписанных – S2 и S3. Найдите значение (S2+S3)/S1.

Задачу решили: 42
всего попыток: 62
Задача опубликована: 06.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найдите наибольшее натуральное k такое, что любые положительные числа, удовлетворяющие неравенству a2 > bc, удовлетворяют также неравенству (a2bc)2 > k(b2ca)(c2ab).

Задачу решили: 89
всего попыток: 99
Задача опубликована: 11.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2007
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Про функцию f(x) известно, что f(1) = 1, и для любых x, y выполнено тождество f(x+y) = 2xf(y)+3yf(x). Найдите f(15).

Задачу решили: 59
всего попыток: 62
Задача опубликована: 25.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: sacred_shaved_... (Никита Гладков)

Найдите максимальное значение f(1) если  f: Z ? Z такая, что для любых целых чисел х и у выполнено равенство f(f(x)+y+1) = x+f(y)+1.

Задачу решили: 111
всего попыток: 149
Задача опубликована: 18.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Решите уравнение $x^{x^{x^{...}}}=3$ (x возводится в степень x бесконечное число раз). В качестве ответа введите значение x9.

Задачу решили: 103
всего попыток: 129
Задача опубликована: 13.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Определите 3 последние цифры числа 79999.

Задачу решили: 71
всего попыток: 95
Задача опубликована: 15.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Сумма цифр числа 44444444 равна M, сумма цифр числа M равна N. Чему равна сумма цифр числа N?

Задачу решили: 78
всего попыток: 91
Задача опубликована: 17.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vsevolod_mashi... (Всеволод Машинсон)

Для натуральных чисел a, b и c верны следующие равенства

a3-b3-c3=3abc,

a2=2(b+c).

Чему равно a+b+c?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.