Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
88
всего попыток:
115
Эта шахматная позиция возникла из начальной после четвёртого хода чёрных. Как именно? В ответе необходимо указать все ходы белых и чёрных фигур.
Задачу решили:
178
всего попыток:
215
На шахматной доске стоят 13 ладей так, что каждое незанятое поле находится под ударом хотя бы одной из них. Какое максимальное количество ладей можно снять с доски, чтобы все незанятые поля находились под ударом?
Задачу решили:
103
всего попыток:
259
На шахматной доске случайным образом расставлены 2 фигуры: король и ладья. С какой вероятностью король бьет ладью?
Задачу решили:
37
всего попыток:
310
В шахматной композиции (задачах) есть раздел сказочных шахмат. В этих задачах изменены или дополнены некоторые шахматные правила (фигуры, форма шахматной доски и т.п.). Рассмотрим сказочные шахматы, в которых короли могут находиться под боем (шахом), а значит возможно и взятие королей. Остальные шахматные правила оставляем в силе. Целью такой игры может быть, например, взятие всех неприятельских фигур (как в шашках). Среди всех возможных позиций, полученных из начальной шахматной позиции играя по этим правилам, присутствуют и позиции только с двумя фигурами — белым королём и чёрным слоном, в которых белые начинают и выигрывают в один ход. Вычислите вероятность возникновения такой позиции при случайной расстановке белого короля и чёрного слона на пустую шахматную доску.
Задачу решили:
10
всего попыток:
40
В шахматах существуют такие расстановки фигур, что любой игрок, при своём ходе, может поставить мат в 1 ход. Нас интересуют расстановки, обладающие этим свойством, с наименьшим количеством фигур на доске. В ответе укажите количество таких различных расстановок.
Задачу решили:
57
всего попыток:
94
Если шахматному коню запретить дважды вставать на одно и тоже поле, то можно найти такое начальное положение коня, что через три хода он будет запатован (у него не будет возможных ходов). Например, поместим коня на поле f2, тогда после ходов 1.Ke4 2.Kg3 3.Kh1 - конь запатован. А можно ли запатовать коня на бесконечной шахматной доске? В ответе укажите минимальное достаточное количество ходов для достижения цели.
Задачу решили:
45
всего попыток:
302
Петя с Васей изучили правила игры в шахматы и стали часто играть между собой. В одной из сыгранных партий у них случилась позиция, в которой присутствовали только короли, ладьи и слоны. А какое максимальное общее количество фигур могло быть на доске в этот момент.
Задачу решили:
55
всего попыток:
83
В левом нижнем углу клетчатой доски n x n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов за которое он может дойти до правого нижнего угла. Найдите n.
Задачу решили:
23
всего попыток:
112
На шахматной доске 8x8 разместили максимально возможное количество ферзей каждого цвета, так что ни один черный ферзь не находится под ударом никакого из белых. Сколько всего ферзей находится на доске?
Задачу решили:
25
всего попыток:
82
На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков. Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|