Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
22
Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. При этом если заданы две точки, то не разрешается провести за одну операцию такие две параллельные прямые, что одна из них проходила через одну из них, а другая – через другую. За какое минимальное количество операций можно найти центр окружности?
Задачу решили:
21
всего попыток:
22
Пусть p и q – длины отрезков одной из биссектрис треугольника, получаемые разбиением её точкой пересечения биссектрис (отрезок p примыкает к вершине). Даны соответствующие отношения p:q для трёх биссектрис этого треугольника: 5:4; 7:2 и 2:1. Найдите периметр этого треугольника, если длина одной из его сторон равна 411 и искомый периметр – целое число.
Задачу решили:
23
всего попыток:
27
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
11
всего попыток:
35
Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. За какое минимальное количество операций можно найти центр окружности?
Задачу решили:
26
всего попыток:
26
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое и так далее числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое и так далее числа. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
17
всего попыток:
25
На сторонах прямоугольного треугольника построены квадраты снаружи с целочисленными значениями площадей. Внутри треугольника вписан квадрат так, что одна из сторон лежит на гипотенузе, а две противоположные вершины лежат на катетах. Площадь квадрата,построенного на одного из катетов, равна 2, площадь внутреннего квадрата равна приблизительно 1 с наибольшим приближением. Найти площадь квадрата, построенного на гипотенузе.
Задачу решили:
23
всего попыток:
27
Центр окружности с радиусом 12 находится на гипотенузе,равной 35, и касается с катетами треугольника. Найти площадь треугольника.
Задачу решили:
21
всего попыток:
23
В треугольнике один из углов на 120° больше другого. Найти отношение длины высоты к длине биссектрисы, опущенных из вершины третьего угла.
Задачу решили:
25
всего попыток:
25
Из двузначного числа, умноженного на однозначное, вычли однозначное и получили 1. Каким эбыло двузначное число?
Задачу решили:
22
всего попыток:
30
Чевиана из вершины прямого угла треугольника АВС(угол С-прямой) СК равен катету АС и делит биссектрису из вершины В в точке пересечения пополам. Найти угол В в градусах.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|