Лента событий:
Lec решил задачу "Дырявый квадрат - 5" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
45
всего попыток:
94
В прямоугольном треугольники периметр (P) и площадь (S) - целые числа и (P+4)=(S-1)(P-4). Найдите сумму всех возможных переиметров таких треугольников?
Задачу решили:
25
всего попыток:
138
Для треугольника ABC верны следующие условия: cos B + cos C = 1 <C - <B = 46° Пусть O - центр описанной окружности, I - центр вписанной окружности, H - ортоцентр (точка пересечения высот) треугольника. Найти угол OIH.
Задачу решили:
42
всего попыток:
102
Периметр треугольника со сторонами a, b, c равен 2. Найдите максимальное значение k такое, что: (1-a)/b + (1-b)/c + (1-c)/a ≥ k.
Задачу решили:
36
всего попыток:
56
Стороны треугольника a > b > c являются целыми числами и удовлетворяют условию f(3a/10000)=f(3b/10000)=f(3c/10000), где f(x)=x-[x] ([x] - целая часть x). Найти минимум периметра такого треугольника.
Задачу решили:
81
всего попыток:
146
Какое количество точек, у которых хотя бы одна из координат является целым числом, лежит на окружности x2+y2=49?
Задачу решили:
25
всего попыток:
329
Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?
Задачу решили:
135
всего попыток:
163
Найдите площадь зеленого квадрата.
Задачу решили:
36
всего попыток:
69
В правильном выпуклом 12-угольнике ABCDEFGHIJKL со стороной 1 провели отрезки AF, BG и CH, которые при пересечении образовали треугольник. Найдите его площадь. Ответ укажите с точностью до 5-го знака после запятой.
Задачу решили:
46
всего попыток:
78
В остроугольном треугольнике, площадь которого равна 1, с каждой вершины на противоположные стороны опущены чевианы. Каждая из них делит сторону в соотношении 1:4. Эти чевианы (отрезки) внутри треугольника образовали треугольник. Найдите площадь этого треугольника.
Задачу решили:
23
всего попыток:
107
Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|