Лента событий:
fortpost решил задачу "Новогодний пример не для программистов." (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
52
всего попыток:
66
Две окружности разных радиусов, расположены так, что центр меньшей находится на большей окружности, как на рисунке. Известно, что длина отрезка BD равна длине BC. Точка A - центр большей окружности. Найти длину отрезка AD, если радиусы окружностей равны 5 и 3.
Задачу решили:
48
всего попыток:
67
Три одинаковых прямоугольных треугольника с одним из углов равным 60 градусов располжены как на рисунке. Найдите отношение длины синей линии к длине красной.
Задачу решили:
41
всего попыток:
44
На отрезке AB длиной 10см. отмечена точка С так, что АС:СВ=5:12. По одну сторону отрезка АВ построены два квадрата АСDE и CBFG. Прямая, содержащая отрезок AD,пересекает FG в точке H. Прямые, содержащие отрезки AG и BH,пересекаются в точке K. Найти BK.
Задачу решили:
65
всего попыток:
72
Площадь квадрата равна 100, найти площадь синей части.
Задачу решили:
36
всего попыток:
68
Внутри угла в 60 градусов расположена точка. Расстояния от этой точки до сторон (лучей) и вершины угла равны различным целочисленным значениям. Найти наименьшее значение суммы этих расстояний.
Задачу решили:
42
всего попыток:
58
В треугольнике через точку, являющуюся центром тяжести проведена прямая линия, которая делит его на две части. Найти минимальное отношение площадей полученных частей.
Задачу решили:
67
всего попыток:
72
В прямоугольный треугольник ABC вписана полуокружность так, что касается гипотенузы BC. Известно, что |AB| = 12, |CD| = 1. Найти радиус окружности.
Задачу решили:
59
всего попыток:
90
Сколько всего правильных многоугольников, у которых внутренние углы в градусах являются целыми числами?
Задачу решили:
35
всего попыток:
62
Вася всеми способами разделив прямоугольник на 3 равновеликих прямоугольника, получил различные значения сумм периметров при каждом способе, общая сумма всех которых составила 690. Найти периметр исходного прямоугольника.
Задачу решили:
46
всего попыток:
52
Определите площадь прямоугольника с учетом известных площадей частей.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|