Лента событий:
Vkorsukov решил задачу "Параллелограмм и две биссектрисы - 3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
54
всего попыток:
152
Для натурального числа k обозначим
Задачу решили:
43
всего попыток:
72
Для целых чисел a, b, c, n, удовлетворяющих двум следующим условиям, найдите 7a + 13b + 97c.
Задачу решили:
44
всего попыток:
205
Найдите остаток от деления на 155 следующего выражения:
Задачу решили:
50
всего попыток:
61
Положительные целые числа x, y удовлетворяют условию y2 = (x2 - 482)(x2 - 552). Найдите остаток от деления x + y на 1000.
Задачу решили:
59
всего попыток:
311
Сколько существует пар положительных целых чисел, удовлетворяющих уравнению x2+10!=y2?
Задачу решили:
69
всего попыток:
94
Все члены конечной последовательности являются натуральными числами. Известно, что каждый член этой последовательности, начиная со второго, либо в 6 раз больше, либо в 6 раз меньше предыдущего, а сумма всех членов последовательности равна 2024. Какое наибольшее количество членов может быть в такой последовательности?
Задачу решили:
43
всего попыток:
69
Найти сумму всех целых чисел n таких, что
Задачу решили:
62
всего попыток:
77
Натуральное число 55n3 имеет 55 делителей, включая 1 и само число. Сколько делителей имеет натуральное число вида 7n7?
Задачу решили:
66
всего попыток:
97
Найти наименьшее натуральное число N такое, что N! кратно 102015.
Задачу решили:
60
всего попыток:
122
Найти максимальное натуральное число n такое, что n7+1 делится на n+7.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|