Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
21
всего попыток:
28
Взаимно простые целые числа x, y и z удовлетворяют следующим условиям: x2+y2+z2=2xy+2yz+2zx 0<z<y<x<12345 Найти наибольшее значение x.
Задачу решили:
22
всего попыток:
29
Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25. Найдите абсциссу вершины D этого четырехугольника.
Задачу решили:
19
всего попыток:
30
Для каждого натурального N>1 определены: Найдите максимальное N, меньшее 12345, для которого g(N) нецело.
Задачу решили:
22
всего попыток:
27
Найти сумму всех целых возможных x и y таких, что 2x+3y=z2 (z - тоже целое).
Задачу решили:
26
всего попыток:
35
В координатной плоскости построены парабола y = x2 - 5x + 10 и окружность, пересекающая параболу в четырех точках A, B, C и D. Известны абсциссы трех точек: xA = 23, xB = –24, xC = – 25. Найдите абсциссу четвертой точки D.
Задачу решили:
14
всего попыток:
19
Найти 2 первых 24-значных натуральных квадратных числа, запись которых в десятичной системе счисления, состоит из двух последовательных 12-значных чисел написанных одно за другим. В качестве ответа ввести сумму найденных чисел.
Задачу решили:
15
всего попыток:
82
Найдите минимальную сумму таких натуральных a и b (a>b), что на эллипсе: x2/a2 + y2/b2 = 1 лежат ровно 36 точек с целочисленными координатами.
Задачу решили:
14
всего попыток:
17
Два эллипса каждый с минимальной суммой натуральных a и b (a > b) заданы в канонической форме: x2/a2 + y2/b2 = 1. На одном лежат ровно 36 точек с целочисленными координатами, а на другом ровно 28 точек с целочисленными координатами. Найти отношение площадей эллипсов меньшей к большей.
Задачу решили:
15
всего попыток:
20
Существуют числа, десятичная запись квадрата которых оканчивается на последовательные цифры. Например,17^2=289. Чему равно наименьшее трёхзначное число, десятичная запись квадрата которого оканчивается на наибольшее количество последовательных цифр одинаковой чётности?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|