img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 59
всего попыток: 391
Задача опубликована: 29.06.09 15:52
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В пространстве даны шар и три различные плоскости, возможно его пересекающие. Каково максимально возможное число разных способов, которыми можно разместить в пространстве второй шар так, чтобы он касался первого и трёх данных плоскостей?

Задачу решили: 198
всего попыток: 269
Задача опубликована: 03.07.09 22:37
Прислал: Rep img
Источник: Ростовская областная математическая олимпиада...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Стороны треугольника — последовательные целые числа. Найдите эти стороны, если известно, что одна из его биссектрис перпендикулярна одной из его медиан. В ответе укажите сумму сторон треугольника.

Задачу решили: 151
всего попыток: 274
Задача опубликована: 13.07.09 00:38
Прислал: Rep img
Источник: Всесоюзная олимпиада школьников по математике...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найдите наименьшее натуральное значение x, удовлетворяющее уравнению [10n/x]=2009 при некотором натуральном значении n. ([y] — это целая часть y, т.е. наибольшее целое число, не превосходящее y.)

Задачу решили: 194
всего попыток: 292
Задача опубликована: 22.07.09 00:40
Прислала: xyz img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Найдите сумму всех различных натуральных значений n, при которых сумма 1!+2!+3!+...+n! является квадратом целого числа. (Как обычно, n!=1·2·3·...·n.)

Задачу решили: 583
всего попыток: 685
Задача опубликована: 22.07.09 23:38
Прислал: AndreTM img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: uchilka725 (Оксана Урусова)

188 — 4

232 — 0

100 — 2

163 — 1

386 — ?

Задачу решили: 589
всего попыток: 697
Задача опубликована: 24.07.09 00:44
Прислал: Rep img
Источник: "Квант для младших школьников"
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: NikitaKozlov77... (Никита Козлов)

"Как-то в 2007 году, — вспоминает Вовочка, — я выписал подряд все свои оценки по пению, полученные в четверти, и между некоторыми из них поставил знак умножения. Когда я перемножил числа, то получил в произведении 2007. Помню, что оценки "единица" не было. Как вы думаете, что мне поставили по пению в той четверти?" Дробных оценок в четверти не бывает!

Задачу решили: 202
всего попыток: 345
Задача опубликована: 26.07.09 00:35
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Сколько различных решений имеет уравнение:  24x6−4x5−78x4+29x3+56x2−42x+8=0?

Задачу решили: 680
всего попыток: 1715
Задача опубликована: 31.07.09 00:10
Прислал: il_sidor img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: nellyk

Продавец продаёт шапку. Стоит 10 р. Подходит покупатель, меряет и согласен взять, но у него есть только банкнота 25 р. Продавец отсылает мальчика с этими 25 р. к соседке разменять. Мальчик прибегает и отдаёт 10+10+5. Продавец отдаёт шапку и сдачу 15 руб. Через какое-то время приходит соседка и говорит, что 25 р. фальшивые, требует отдать ей деньги. Ну, что делать. Продавец лезет в кассу и возвращает ей деньги. На сколько рублей обманули продавца?

(По легенде, эта задачка придумана Львом Толстым для второго класса церковноприходской школы.)
Задачу решили: 143
всего попыток: 595
Задача опубликована: 05.08.09 12:53
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: iVantus

Гусеница сидит внутри закрытой коробки длиной 75 см, шириной 32 см и высотой 32 см, посередине боковой квадратной стенки на высоте 3 см от дна. Посередине противоположной стенки на 3 см ниже крышки в коробке есть маленькое отверстие, через которое гусеница хочет выбраться на свободу.

Какое наименьшее число сантиметров ей придётся преодолеть, чтобы вылезти из отверстия? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 131
всего попыток: 182
Задача опубликована: 06.08.09 00:53
Прислала: Hasmik33 img
Вес: 1
сложность: 2 img
баллы: 100

Продолжите последовательность: Т464, Г6128, О8126, Д123020, ?

(Задача предложена Б.Бурдой во время "Колорадского конкурса".)
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.