img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: avilow добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 67
всего попыток: 213
Задача опубликована: 04.07.12 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Все стороны прямоугольного параллелепипеда - целые числа (в см.), а его объём - больше 2000 куб. см. Найдите наименьшую возможную площадь его поверхности в кв. см.

Задачу решили: 36
всего попыток: 60
Задача опубликована: 05.07.13 09:18
Прислал: nauru img
Источник: Кубок Колмогорова 2008
Вес: 1
сложность: 4 img
баллы: 100

Дана вписанная n-угольная пирамида SA1A2…An. Сфера ? касается всех её боковых ребер SAi, а также касается плоскости основания в точке K. При каком минимальном n точка K обязательно является центром окружности, описанной около основания?

Задачу решили: 51
всего попыток: 123
Задача опубликована: 10.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В трехмерном кубе 8х8х8 играют в крестики-нолики. Сколько существует прямых, на которых могут лежать 8 крестиков в ряд?

Задачу решили: 28
всего попыток: 94
Задача опубликована: 26.02.14 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите максимальное количество плоскостей, каждая из которых равноудалена от некоторых четырёх точек из заданных 2014-ти точек пространства, расположенных в общем положении.

Задачу решили: 27
всего попыток: 43
Задача опубликована: 18.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Для действительных чисел x, y, z верно:
(x2+y2+z2)+(x+y+z)2=9 и 32xyz≤15. Найдите максимум x.

Задачу решили: 44
всего попыток: 118
Задача опубликована: 27.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Основание правильной пирамиды ABCD является квадратом со стороной 2. Вершина пирамиды E находится на высоте 1 от основания. На стороне CE посредине отмечена точка F.

Муравей ползет из точки A в точку F по кратчайшему пути. Найдите квадрат расстояния пройденного муравьем.

Задачу решили: 35
всего попыток: 93
Задача опубликована: 29.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

rubik.jpg

Кубик Рубика был в собранном состоянии (все стороны окрашены в одинаковые цвета). Затем сделали некоторое количество оборотов, в результате которых получилось так, что никакие две соседние клетки не окрашены в одинаковые цвета.

Какое минимальное количество поворотов могло быть сделано?

Задачу решили: 35
всего попыток: 46
Задача опубликована: 26.02.16 08:00
Прислал: admin img
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100

Куб со стороной равной 2016 см разбит перегородками на кубики со сторонами 1 см. Какое минимальное число перегородок между единичными кубиками нужно удалить, чтобы из каждого кубика можно было добраться до границы куба?

Задачу решили: 28
всего попыток: 51
Задача опубликована: 04.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Даны два правильных тетраэдра с ребрами длины 21/2, переводящихся один в другой при центральной симметрии. Пусть F — множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры F.

Задачу решили: 38
всего попыток: 103
Задача опубликована: 18.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.