img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 41
всего попыток: 250
Задача опубликована: 09.07.12 15:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

Среди X монет одна фальшивая (более лёгкая). Известно, что её заведомо можно найти не более, чем за 100 взвешиваний на чашечных весах без гирь, при этом каждую монету нельзя взвешивать более двух раз. Найдите наибольшее значение X.

Задачу решили: 24
всего попыток: 49
Задача опубликована: 15.03.13 08:00
Прислал: Freeplay img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Sam777e

Двое играют в следующую игру. У них есть доска 30х20 и 2 коробочки фишек - в одной 600 белых, в другой 400 чёрных. Ход состоит в том, что первый игрок выбирает коробочку, содержащую фишки, а второй берёт из неё фишку и ставит на любую свободную клетку доски. Игра заканчивается, когда все клетки заняты. Какой наибольший квадрат, во всех клетках которого стоят фишки одного цвета, может получить второй, независимо от игры первого? (В ответе укажите длину стороны этого квадрата).

Задачу решили: 28
всего попыток: 118
Задача опубликована: 09.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

На листке первый игрок записал число 0. Затем по очереди справа к выражению второй пишет знак плюс или минус, а первый одно из натуральных чисел от 1 до 2015. Оба делают по 2015 ходов, причем первый записывает каждое из чисел от 1 до 2015 ровно по одному разу. В конце игры первый игрок получает выигрыш, равный модулю алгебраической суммы, написанной на листке. Какой наибольший выигрыш он может себе гарантировать?

Задачу решили: 33
всего попыток: 80
Задача опубликована: 05.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: - Кто Ваш сосед справа — умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F. При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?

Задачу решили: 41
всего попыток: 116
Задача опубликована: 23.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Матрицу 10x10 заполнили целыми числами от 1 до 100 так, что сумма любых двух чисел на соседних клетках не превосходит некоторого целого числа M. Найдите минимально возможное M.

Задачу решили: 38
всего попыток: 42
Задача опубликована: 30.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг.

В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?

Задачу решили: 37
всего попыток: 89
Задача опубликована: 10.10.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Vkorsukov

Числа от 1 до 20 расположены по кругу так, что минимальная разница между любыми двумя соседними числами максимальна. Найдите эту разницу.

Задачу решили: 74
всего попыток: 94
Задача опубликована: 28.06.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Через какое максимальное количество синих точек можно пройти по дороге от красной точки к зеленой при условии, что ни по какой линии между точками нельзя проходить дважды? (Можно ходить только по прямым линиям и синим точкам.)

Задачу решили: 47
всего попыток: 95
Задача опубликована: 05.01.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Vkorsukov

Ярослав, Костя и Настя играют в быстрые шахматы. В одно время играют двое, проигравшего заменяет тот, кто не играл. Ярослав выиграл 10 раз, Костя - 21. Какое минимаьное число раз могли мальчики сыграть между собой?

+ 0
  
Задачу решили: 32
всего попыток: 101
Задача опубликована: 23.03.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Buuul (Майк Бул)

На доске 5х5 стоят 25 шашек реверси (с одной стороны белые, с другой - черные) белой стороной вверх. За один ход можно перевернуть любую шашку и все соседние по вертикали и горизонтали. За какое минимальное число ходов можно перевернуть шашки так, чтобы одна шашка была черной стороной вверх?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.