Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
31
При сгибе прямоугольного листа бумаги с целочисленными сторонами, одна из которой равна 7, были совмещены две противоположные вершины. Найти длину линии сгиба при условии равенства её рациональному числу.
Задачу решили:
26
всего попыток:
28
На сторонах прямоугольного треугольника с гипотенузой, равной 13 и с суммой длин катетов, равной 15 построили во внешнюю сторону квадраты. Найти площадь шестиугольника, вершины которого являются вершинами квадратов, не связанных с треугольником.
Задачу решили:
28
всего попыток:
30
Периметр прямоугольного треугольника АВС (АВ - гипотенуза) равен 90. Длина катета АС больше 20. Окружность с радиусом 10, центр которой находится на катете ВС, касается прямых АВ и АС. Найти площадь треугольника АВС.
Задачу решили:
30
всего попыток:
34
Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиуса 2, касающиеся её сторон и друг друга, причем K – одна из точек касания. Найдите площадь трапеции ABCD.
Задачу решили:
24
всего попыток:
35
Прямоугольник и квадрат, у которых совпадает одна из диагоналей, расположены так, что прямоугольник делит своими двумя параллельными сторонами две параллельные стороны квадрата в отношении 1:3. Найти площадь квадрата, если известно, что она является целым числом, площадь прямоугольника равна 14.
Задачу решили:
25
всего попыток:
29
В квадрате ABCD точка М лежит на стороне ВС, а точка N - на стороне АВ. Прямые АМ и DN пересекаются в точке О. Найти площадь квадрата, если известно, что |DN|=4, |AM|=3, а косинус угла AOD=0.6.
Задачу решили:
21
всего попыток:
28
Четыре круга с различными целочисленными диаметрами D, D1, D2, D3 таковы, что D=D1 + D2 + D3. Для площадей этих кругов справедливо равенство S=2*(S1 + S2 + S3). Найти наименьший D.
Задачу решили:
21
всего попыток:
28
В день своего 18-летия Таня нарисовала выпуклый 18-угольник, каждый угол которого кратен 18 градусам.
Задачу решили:
26
всего попыток:
27
В выпуклом четырехугольнике ABCD равны АВ, ВС и CD, а угол D равен сумме углов А и С. Чему равен DAC в градусах?
Задачу решили:
18
всего попыток:
27
Квадратное поле огорожено дощатым забором, который сколочен из L-метровых досок, расположенных горизонтально. Высота забора равна N доскам. Известно, что число досок в заборе равно площади поля, выраженной в гектарах. Найти наименьшее количество досок при L<10 метров, 1<N<10 (L и N - натуральные числа).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|