Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
29
В сосуде, имеющем форму правильной треугольной призмы, находилась вода, причём её уровень составлял 30 сантиметров. Всю эту воду перелили в пустой сосуд, имеющий форму правильной шестиугольной призмы, сторона основания которой вдвое меньше стороны основания треугольной призмы. Чему равен уровень воды теперь? Ответ выразите в сантиметрах
Задачу решили:
18
всего попыток:
24
Два прямоугольных треугольника, в каждом из которых проведены высоты с прямого угла и по одной биссектрисе с острого угла. В одном тругольнике точка пересечения высоты и биссектрисы делит высоту на отрезки 15 и 9, считая от вершины прямого угла. В другом треугольнике делит биссектрису на отрезки 9 и 6, считая от вершины, с которой проведена биссектриса. Найти отношение площадей треугольников (меньшей к большей).
Задачу решили:
19
всего попыток:
22
Найти диаметр окружности, описанной около шестиугольника, у которого длины каждой из 4-х сторон равна 15, каждой из оставшихся 2-х других сторон равна 7.
Задачу решили:
21
всего попыток:
21
В прямоугольном треугольнике АВС (угол С - прямой) из вершины А трисектрисы пересекают катет ВС в точках M и N так, что |СМ|=2, |MN|=3. Найдите квадрат гипотенузы АВ.
Задачу решили:
10
всего попыток:
35
Чему равна площадь девятого по величине восьмиугольника с углами 135 градусов, по периметру которого находятся только 8 узлов квадратной решётки – в вершинах восьмиугольника.
Задачу решили:
15
всего попыток:
17
Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Найдите минимальное вещественное L, если K=97 и N=163.
Задачу решили:
13
всего попыток:
15
Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Дано: K=99, N=189, и L имеет минимально возможное вещественное значение. Найдите синус меньшего угла между сторонами прямоугольников.
Задачу решили:
15
всего попыток:
18
Укажите количество примитивных пифагоровых треугольников ABC, у которых тангенс каждого из углов A/2, B/2, C/2 представим в виде p/q, где p и q целые, и 0 < p ≤ q ≤ 10.
Задачу решили:
15
всего попыток:
38
В пифагоров треугольник вписаны две равных окружностей с целочисленным значением радиусов так, что они касались между собой, гипотенузой и одна из них с одним катетом, другая с другим катетом. Найти наименьший периметр треугольника.
Задачу решили:
22
всего попыток:
40
Из каждой вершины треугольника проведены к противоположной стороне две чевианы, делящие её (противоположную сторону) на 3 равных отрезка. Сколько всего нарисовано треугольников?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|