Лента событий:
putout
добавил решение задачи
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
88
всего попыток:
186
Три десятичных числа сложили в "столбик" AAA Разные буквы означают разные цифры. Сколько возможно вариантов решения для этой записи?
Задачу решили:
38
всего попыток:
403
Два десятичных числа сложили в "столбик" ABC Разные буквы означают разные цифры. Сколько возможно вариантов решения для этой записи?
Задачу решили:
28
всего попыток:
118
На листке первый игрок записал число 0. Затем по очереди справа к выражению второй пишет знак плюс или минус, а первый одно из натуральных чисел от 1 до 2015. Оба делают по 2015 ходов, причем первый записывает каждое из чисел от 1 до 2015 ровно по одному разу. В конце игры первый игрок получает выигрыш, равный модулю алгебраической суммы, написанной на листке. Какой наибольший выигрыш он может себе гарантировать?
Задачу решили:
47
всего попыток:
71
На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого).
Задачу решили:
41
всего попыток:
57
В колоде 2016 карт. Часть из них лежит рубашками вверх, остальные - рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?
Задачу решили:
40
всего попыток:
91
Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ "да" надо заплатить 2 рубля, за ответ "нет" — 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?
Задачу решили:
48
всего попыток:
53
У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берет себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Среди крестьян выбирается тот, у кого стало больше всех овец. Сколько у него овец?
Задачу решили:
39
всего попыток:
68
Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка — черная, соответственно белым, если клетка белая. Пусть A — количество черных отрезков на периметре, B — количество белых, и пусть многоугольник состоит из 28 черных и 16 белых клеток. Чему равно A-B?
Задачу решили:
128
всего попыток:
178
Кузнецу принесли пять обрывков цепи, по три звена в каждом и велели сковать в одну цепь. Какое наименьшее количество звеньев ему придется для этого раскрыть и снова заковать?
Задачу решили:
43
всего попыток:
51
Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету? В ответе дайте количество взвешиваний.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|