Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
31
В таблице умножения от 1х1 до 7х7 выделен центральный ступенчатый квадрат максимального размера так, как показано на рисунке. Сколькими нулями оканчивается произведение чисел во всех клетках такого же ступенчатого квадрата для таблицы умножения от 1х1 до 25х25?
Задачу решили:
25
всего попыток:
27
Ванна с двумя кранами горячей и холодной воды заполняется горячей водой автономно за 17 минут, холодной за 11 минут. При одновременном заполнении устанавливается определенное отношение объема горячей воды к объему холодной воды. На сколько минут нужно раньше включить горячую воду до включения холодной, чтобы это отношение зеркально поменялось?
Задачу решили:
27
всего попыток:
30
На доске записано 21 последовательных натуральных чисел. После вычеркивания одного из чисел и сложения оставшиеся 20 чисел получили 2023. Какое число вычеркнули?
Задачу решили:
24
всего попыток:
29
Запись натурального числа начинается с цифры «3». Если эту цифру перенести в конец записи, то число уменьшится втрое. Найдите наименьшее такое число.
Задачу решили:
29
всего попыток:
37
Два парома ходят между двумя противоположными берегами реки с постоянными скоростями. Достигнув берега, каждый из них тут же начинает двигаться в обратном направлении. Паромы отчалили от противопложных берегов одновременно, встретились впервые в 700 метрах от одного из берегов, поплыли дальше каждый к соответствующему берегу, затем повернули назад и вновь встретились в 400 метрах от другого берега. Определите ширину реки в метрах.
Задачу решили:
28
всего попыток:
29
Трое зашли в кафе. Один купил 4 сандвича, чашку кофе и 10 пончиков за 1 доллар 69 центов, второй купил 3 сандвича, чашку кофе и 7 пончиков за 1 доллар 26 центов. Сколько центов заплатил третий за сандвич, чашку кофе и пончик?
Задачу решили:
21
всего попыток:
26
В бесконечно убывающей последовательности 1; 1/2; 1/3; 1/4; 1/5; ... выберите такие десять чисел, которые образуют арифметическую прогрессию, а их сумма – наибольшая. Введите эту сумму.
Задачу решили:
25
всего попыток:
31
В некоторой стране одна из футбольных команд после проведения чемпионата посчитала штрафные очки всех 11-ти игроков. Каждый игрок имел различное число очков, при этом наименьшее количество очков было у вратаря. Сколько очков было у вратаря, если известно, что сумма очков 6-ти произвольно взятых игроков больше суммы очков остальных 5-ти игроков?
Задачу решили:
23
всего попыток:
24
Вася расположил в ряд 10 карточек с различными цифрами и обнаружил в них контуры трех чисел, которые в порядке следования относились как 1:3:5. Какое десятизначное число расположил Вася на столе?
Задачу решили:
21
всего попыток:
23
Группа из 5 слонов и 7 бегемотов съела 11 круглых и 20 кубических арбузов, а группа из 8 слонов и 4 бегемотов съела 20 круглых и 8 кубических арбузов. Причем один их видов животных оказался привередлив и ел арбузы только одной формы. Известно, что слоны съедали поровну целое количество арбузов и бегемоты также поровну целое количество арбузов. Круглые и кубические арбузы имеют одинаковый вес. Какой вид животных привередливый, какой формы предпочитает арбуз и сколько штук съедает его одна особа? Для введения ответа введем обозначения цифрами: слон-1, бегемот-2. Круглый арбуз-1, кубический арбуз-2. К примеру ответ 213 означает бегемот съедает 3 круглых арбуза.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|