Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
84
всего попыток:
133
Найдите геометрическую прогрессию максимальной длины, все члены которой — различные целые числа из промежутка от 100 до 1000 включительно. В ответе укажите наибольший член этой прогрессии.
Задачу решили:
112
всего попыток:
150
Найдите остаток от деления числа (2010!)2011 на 2011 (n! означает произведение всех натуральных чисел от 1 до n).
Задачу решили:
66
всего попыток:
434
Участников математической олимпиады пересчитали и спросили, кто поедет в воскресенье на экскурсию. Каждый участник сделал следующее заявление: "Я поеду, если всего поедет не менее n2/N и не более n участников олимпиады, где n — мой номер, а N — общее число участников олимпиады". Какое наибольшее число участников смогут поехать на экскурсию, если N=125?
Задачу решили:
72
всего попыток:
130
Угол между часовой и минутной стрелками — один градус. Секундная стрелка — ровно на 12. Который час? В ответе введите без пробела часы (от 0 до 11) и минуты (от 00 до 59). Если задача имеет более одного решения, введите их в порядке возрастания. (Например, если ответ "0:15 и 11:01", введите 0151101; а вместо 14:25 введите 2:25.)
Задачу решили:
49
всего попыток:
85
Найти минимальное натуральное число n>2010, удовлетворяющее условию: в любом множестве из n целых чисел существует подмножество из 2010 чисел, сумма которых делится на 2010.
Задачу решили:
102
всего попыток:
128
Пусть аn=n2+n+1 и bn=an·an+1 (n=1,2,3...). Сколько членов последовательности {bn} НЕ являются членами последовательности {an}?
Задачу решили:
86
всего попыток:
110
В квадратную таблицу n×n записаны все натуральные числа от 1 до n2 в следующем порядке: числа от 1 до n — в первой сверху строке слева направо, числа от n+1 до 2n — во второй сверху строке слева направо, и т. д. Выберем n чисел из этой таблицы так, чтобы из каждой строки было выбрано ровно 1 число и из каждого столбца было выбрано ровно 1 число. Какие значения может принимать сумма всех выбранных нами чисел? В ответе запишите сумму всех возможных значений при n=2011.
Задачу решили:
72
всего попыток:
256
Сколько различных действительных решений имеет уравнение f(f(x))=x, где f(x)=|4021·|x|−2011|−2010?
Задачу решили:
86
всего попыток:
151
Многочлен степени 2010 имеет 2010 действительных различных корней. Найдите наименьшее число его ненулевых коэффициентов.
Задачу решили:
46
всего попыток:
100
Сколько различных чисел встречается среди остатков от деления на n чисел 13, 23, 33, ..., (n−1)3, n3, где n=9699690·2011?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|