Лента событий:
fortpost решил задачу "Три числа и степени" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
26
СП*РАВ=ОЧНИК, РАВ/СП=целое число. СПРАВОЧНИК=? Различным буквам соответствуют разные цифры, одинаковым буквам - одинаковые цифры.
Задачу решили:
28
всего попыток:
39
Чтобы гарантированно извлечь квадратный корень из произведения 1!*2!*3!*...*100! нужно вычеркнуть один из факториалов. Укажите какое число стоит перед знаком этого факториала.
Задачу решили:
24
всего попыток:
30
Требуется распилить деревянный куб с ребром 4см. на 64 кубика с ребром 1см. Каким наименьшим числом распилов можно обойтись, если разрешить перемещать распиленные части?
Задачу решили:
26
всего попыток:
28
На доске было написано 5 целых чисел по возрастанию, отделяя запятыми. Сложив их попарно, получили следующие 10 чисел: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15. Запишите в ответе написанные на доске 5 целых чисел одним числом, убрав запятые.
Задачу решили:
28
всего попыток:
30
4 взрослых и 5 детей построили стену за 20 дней, 5 взрослых и 4 детей построили её за 16 дней. За сколько дней эту стену построят 4 взрослых и 3 детей?
Задачу решили:
22
всего попыток:
32
Найти наименьшее количество множителей факториала 2023!, на которых нужно разделить его, чтобы частное оканчивалось на 1 (единицу).
Задачу решили:
26
всего попыток:
31
Натуральное число назовем представимым, если его можно представить в виде такой суммы a+b+ab, где a и b натуральные числа. Например, число 101 представимое, потому что 101 = 5 + 16 + 5 · 16. Сколько представимых чисел среди трехзначных?
Задачу решили:
11
всего попыток:
33
На иллюстрации изображены три замкнутые непересекающиеся ломаные на квадратной сетке. Каждая из них помещается в минимальном квадрате (на этой же квадратной сетке) размера 3 на 3. Сколько всего таких ломаных?
Задачу решили:
27
всего попыток:
31
(1!*2!*3!*4!*5!*6!*7!*8!*9!*10!/n)1/2=m. Найдите миниммальное целое число n, такое что m - целое.
Задачу решили:
17
всего попыток:
31
Вася нарезал фигурки из бумаги n квадратиков и m кружочков, написал на каждую из них по одной цифре, кроме цифры ноль. При этом цифры, что бфли на кружочках не встречались на квадратиках, и, соответственно, цифры, что были на квадратиках не встречались на кружочках. Далее он составил из них всевозможные равенства по схеме: "квадратик"*"кружочек"+"квадратик"+"кружочек"=сумма десяти "квадратиков"+"кружочек", при этом были использованы все квадратики и кружочки. Затем он сложил все цифры на всех квадратиках и кружочках и добавил к нему n и m. Какле число получил Вася?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|