img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 132
всего попыток: 1048
Задача опубликована: 22.05.09 17:53
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

На полу коридора длиной 120 метров лежат 25 ковровых дорожек общей длиной 600 метров. Каково максимально возможное число кусков пола, не застеленных дорожками?

Задачу решили: 577
всего попыток: 658
Задача опубликована: 09.07.09 10:25
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vitsel (Виталий Леонтьев)

По аллее длиной 240 м навстречу друг другу идут двое детей. Скорость мальчика 1,5 м/с, а его младшей сестрёнки — 1 м/с. Между ними от одного к другому, не останавливаясь и заливаясь радостным лаем, бегает их собака со скоростью 5 м/с. Сколько метров пробежит собака прежде, чем дети встретятся?

Задачу решили: 203
всего попыток: 593
Задача опубликована: 22.05.09 20:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Mnohogrannik

Сколько различных целочисленных решений имеет неравенство |x|+|y|≤2009 ?

Задачу решили: 971
всего попыток: 1132
Задача опубликована: 23.05.09 21:14
Прислала: sashulya img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Малыш может съесть банку варенья за 6 минут, а Карлсон — за 3. За сколько минут они вместе опустошат эту банку?

Задачу решили: 149
всего попыток: 200
Задача опубликована: 25.05.09 23:32
Прислал: demiurgos img
Источник: П.В.Маковецкий "Смотри в корень!"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Существует теория, что ночная бабочка для навигации использует Луну: она летит по прямой, поддерживая постоянным угол между направлением своего полёта и направлением на Луну. Если же она примет за Луну уличный фонарь или другой близкий к ней источник света, то полетит вокруг него по спирали, приближаясь или удаляясь от него. (Пограничный случай полёта по окружности бывает лишь в теории.)

Через сколько секунд ночная бабочка долетит до фонаря, если он находится в 18-ти метрах от неё, летит она со скоростью 1 м/с и поддерживает угол 60° между направлением своего полёта и направлением на фонарь? (Бабочка и фонарь — это точки в пространстве.)

Задачу решили: 779
всего попыток: 1583
Задача опубликована: 23.05.09 22:49
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: silentsquall

На чердаке дома установлены три лампочки, а в подвале — три выключателя: по одному на лампочку. Положение "включено" на каждом из выключателей отмечено, а от какой он лампочки — нет. Из подвала не видно, какие лампочки горят, а какие нет. Сколько раз необходимо подняться из подвала на чердак, чтобы установить, какой из выключателей подключен к каждой лампочке?

Задачу решили: 374
всего попыток: 1277
Задача опубликована: 24.05.09 22:13
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: student1806 (Руслан Газизов)

Имеются две шестерёнки с одинаковыми зубьями, но разного диаметра: одна в пять раз больше другой. Большая шестерёнка неподвижна, а маленькая катится по большой, делая вокруг неё один оборот. Сколько оборотов сделает маленькая шестерёнка вокруг своей оси?

Задачу решили: 149
всего попыток: 271
Задача опубликована: 27.05.09 20:42
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Каждая сторона правильного треугольника делится на 9 равных отрезков, через концы которых проводятся всевозможные прямые, параллельные сторонам. В результате чего большой треугольник разбивается на 81 маленький, любые два из которых, имеющие общую сторону, называются соседними. Какое максимальное количество маленьких треугольников можно обойти, если разрешается двигаться от треугольника к любому соседнему, но нельзя проходить по одному и тому же треугольнику дважды?

Задачу решили: 136
всего попыток: 384
Задача опубликована: 25.05.09 22:46
Прислал: demiurgos img
Источник: Г.Гамов, М.Стерн "Занимательные задачи"
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: NNN

Перед Вами две урны, в которых лежат 20 белых и 20 чёрных шаров, но сколько и каких шаров лежат в каждой урне — неизвестно. Вы наудачу выбираете урну, а затем извлекаете из неё шар. Зависит ли вероятность извлечь белый шар от того, как первоначально разложены шары в урнах? В ответе введите максимальное значение этой вероятности в виде несократимой дроби p/q, где p и q — натуральные числа.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.