Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
378
всего попыток:
846
На вечеринке собрались 5 супружеских пар. Встречаясь, некоторые участники вечеринки обменивались рукопожатиями, некоторые нет. (Супруги, разумеется, друг другу руки не пожимали.) Один из участников вечеринки, мистер Смит, опросил всех остальных, сколько рукопожатий сделал каждый из них. Все названные числа оказались разными. Сколько рукопожатий сделал сам мистер Смит?
(Предлагалась на "Первом математическом")
Задачу решили:
950
всего попыток:
4846
На книжной полке стоит трёхтомник Пушкина. Страницы каждого тома имеют вместе толщину 3 см, а каждая обложка — 2 мм. Червь прогрыз нору от первой страницы первого тома до последней страницы последнего тома. Какова длина норы? (Ответ дайте в миллиметрах.)
Задачу решили:
198
всего попыток:
439
В футбольном турнире каждая команда сыграла с каждой по одному разу. Ровно треть команд хотя бы раз сыграли вничью, а ровно 75% остальных команд не обошлись без поражений. При этом только одна команда не проиграла ни одного матча. Сколько матчей турнира окончились победой одной из команд?
Задачу решили:
896
всего попыток:
1478
Нам с тобой вместе 35 лет. Мне в два раза больше, чем тебе тогда, когда мне было столько же, сколько тебе сейчас. Сколько нам лет? (В ответе укажите произведение найденных возрастов.)
Задачу решили:
110
всего попыток:
781
Витязи накануне хорошо отдохнули и перед выходом из моря построились не по росту. Перестраиваться они не соглашаются, но их морской дядька может приказать некоторым из них выйти из строя так, чтобы оставшиеся стояли по росту либо в порядке убывания, либо в порядке возрастания. Какое максимальное число витязей он сможет вывести из моря при их наихудшей для него (и наилучшей для них) первоначальной расстановке? Витязи все разного роста, а всего их, как известно, 30.
Задачу решили:
785
всего попыток:
935
На дороге длиной 40 км стоят несколько пеньков (больше одного!). Первый турист идёт пешком со скоростью 5 км/ч, и на каждом пеньке отдыхает одинаковое целое число часов. Второй турист едет на велосипеде со скоростью 8 км/ч и отдыхает на каждом пеньке в два раза дольше, нежели первый турист. Вышли и пришли туристы одновременно. Остаётся один вопрос: а сколько же там было пеньков?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|