img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 13
всего попыток: 17
Задача опубликована: 01.11.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим прямоугольный параллелепипед со сторонами 84, 21039657. Заметьте, что, записав три измерения этого параллелепипеда в десятичной системе счисления, мы использовали каждую цифру ровно один раз. Будем  называть такой параллелепипед интересным.
Также заметим, что данный параллелепипед обладает еще одним свойством: его объем равен 1705928364, и запись этого числа тоже содержит каждую цифру ровно один раз. Интересный параллелепипед, обладающий этим свойством, будем называть очень интересным.
Найдите наибольший объем очень интересного параллелепипеда.

Задачу решили: 7
всего попыток: 23
Задача опубликована: 08.11.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Обозначим через f(n) сумму кубов десятичных цифр натурального числа n, например:
f(5)=53=125
f(27)= 23+73=351
f(31321)= 33+13+33+23+13=64
Найдите последние девять цифр суммы всех n, не превышающих 1020, для которых f(n) является кубом натурального числа.

Задачу решили: 12
всего попыток: 32
Задача опубликована: 15.11.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VVSH (Василий Шедько)

Сколько существует 18-значных чисел, в десятичной записи которых
нет нулей,
не более одной единицы,
не более двух двоек,
не более трех троек,
не более четырех четверок,
не более пяти пятерок,
не более шести шестерок,
не более семи семерок,
не более восьми восьмерок,
и не более девяти девяток?

Задачу решили: 7
всего попыток: 11
Задача опубликована: 22.11.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Ленточным прямоугольником толщины d назовем множество таких точек некоторого прямоугольника, расстояние которых до границы указанного прямоугольника не превышает d.

Будем рассматривать только ленточные прямоугольники, стороны и толщина которых выражаются натуральными числами, а удвоенная толщина меньше каждой из сторон.
На рисунке в качестве примера показаны два ленточных прямоугольника. Площадь каждого из них равна 28.

Сколько существует различных ленточных прямоугольников, площадь которых не превышает 1000000?
(Конгруэнтные ленточные прямоугольники следует считать одинаковыми)

Задачу решили: 9
всего попыток: 13
Задача опубликована: 29.11.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Назовем квадратной рамкой плоскую фигуру, представляющую собой квадрат с вырезанным в нем квадратным отверстием, симметричную относительно вертикальной и горизонтальной осей и составленную из единичных квадратов.
Из восьми единичных квадратов можно составить единственную квадратную рамку размером 3х3 с отверстием 1х1 посередине. А из 32 квадратиков можно составить уже две рамки, как показано на рисунке:



Будем говорить, что натуральное число t относится к классу L(n), если из t квадратиков можно составить рамку n способами. Так, t = 8  относится классу L(1), а t = 32 принадлежит классу L(2).
Пусть N(n) – количество чисел t ≤ 1000000, принадлежащих классу L(n), например, N(15) = 832.
Найдите max(N(n)).

Задачу решили: 10
всего попыток: 14
Задача опубликована: 13.12.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

У каждого из четырех прямоугольных треугольников со сторонами (9,12,15), (12,16,20), (5,12,13) и (12,35,37) длина одного из катетов равна 12. Можно доказать, что других прямоугольных треугольников с целыми сторонами и катетом длиной 12 нет. Таким образом, различных прямоугольных треугольников с целыми сторонами и катетом длиной 12 существует ровно четыре.
Для какого наименьшего целого числа a количество различных прямоугольных треугольников с целыми сторонами и катетом длиной a в точности равно 39062?

Задачу решили: 2
всего попыток: 4
Задача опубликована: 20.12.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Рассмотрим невыпуклый четырехугольник ABCD с диагоналями AC и BD. В каждой вершине входящая в нее диагональ образует два угла со сторонами четырехугольника.
 

Например, в вершине A это будут углы BAC и CAD. Измерим величину этих восьми углов в градусах. Для некоторых четырехугольников полученные восемь чисел окажутся целыми. Будем называть такие четырехугольники невыпуклыми целыми четырехугольниками. Пример невыпуклого целого четырехугольника легко получить, если расположить точки A, B и C в вершинах правильного треугольника, а точку D в его центре. Другой пример получим, задав CAB=85°, BAD=55°, ABD=15°, CBD=50°, ACB=30°, BCD=25°, ADB=110°, BDC=105°.
Подсчитайте, сколько всего существует различных невыпуклых целых четырехугольников, если подобные четырехугольники считаются одинаковыми.

(В расчетах можно считать угол целым, если его величина совпадает с целым числом с точностью до 10-9 градуса.)
Задачу решили: 9
всего попыток: 13
Задача опубликована: 26.12.10 00:13
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Четыре предмета, один из которых белый (Б), а три остальных – черные (Ч), можно сгруппировать семью способами:

(ЧЧЧБ) ,ЧЧБ) ,Ч,ЧБ) ,Ч,Ч,Б) ,ЧЧ,Б) (ЧЧЧ,Б) (ЧЧ,ЧБ)

Обозначим через f(b,w) количество способов, которыми можно сгруппировать множество из b черных и w белых предметов. Так, f(3,1)=7.

Найдите f(60,p), где сумма берется для всех простых p, не превышающих 50.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.