Лента событий:
Vkorsukov
решил задачу
"Целочисленные точки на эллипсах - 2"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
13
Рассмотрим четырехзначные простые числа с повторяющимися цифрами. Ясно, что все цифры не могут быть одинаковы: 1111 делится на 11, 2222 делится на 22, и т.д. Но есть девять четырехзначных простых чисел, содержащих три единицы:
Найдите сумму всех S(n, d) для 3 ≤ n ≤ 10 и 0 ≤ d ≤ 9.
Задачу решили:
17
всего попыток:
46
Будем называть возрастающим натуральное число, десятичные цифры которого не убывают слева направо, например 134468.
(Можно решить при помощи карандаша и бумаги)
Задачу решили:
12
всего попыток:
14
На рисунке изображена прямоугольная полоска из восьми выстроенных в ряд клеток. Идущие подряд клетки одного цвета образуют блоки. При этом красные блоки содержат не менее трех клеток, а черные – не менее двух. Как видно из рисунка, полоску из восьми клеток можно раскрасить таким образом четырнадцатью способами.
Задачу решили:
10
всего попыток:
12
Замечание: Это более сложный вариант задачи 114. Как и в задаче 114, будем рассматривать прямоугольные полоски, состоящие из n выстроенных в ряд клеток. Идущие подряд клетки одного цвета образуют блоки. При этом красные блоки содержат не менее mr клеток, а черные – не менее mb.
Обозначим через F(mr, mb,n) число способов, которым такая полоска может быть построена, например F(3, 2, 8)=14 (см. рисунок).
Кроме того, F(3, 2, 34)= 856506 и F(3, 2, 35)= 1309554. Это означает, что n=35 – минимальное значение, при котором функция F(3, 2,n) превосходит миллион. Аналогично, F(5, 3, 46) = 849735 и F(5, 3, 47)= 1172897, и 47 – первое значение n, при котором F(5, 3, n) больше миллиона. Найдите минимальное значение n, при котором F(111, 100, n) > 1 000 000.
Задачу решили:
6
всего попыток:
22
Электрическая цепь состоит из одинаковых конденсаторов емкостью C. Конденсаторы можно соединять последовательно или параллельно в блоки, которые также можно соединять последовательно или параллельно в "суперблоки" большего размера, и так далее.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|